【題目】已知如圖,六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABCDEF.則下列結論不正確的是( )
A. CD∥平面PAF
B. DF⊥平面PAF
C. CF∥平面PAB
D. CF⊥平面PAD
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(Ⅰ)求橢圓的方程.
(Ⅱ)若, 是橢圓上兩個不同的動點,且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),在以為極點,軸的正半軸為極軸的極坐標系中,射線,與,各有一個交點,當時,這兩個交點間的距離為2,當,這兩個交點重合.
(1)分別說明,是什么曲線,并求出與的值;
(2)設當時,與,的交點分別為,當,與,的交點分別為,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),且當時, .
(1)求函數(shù)的解析式;
(2)現(xiàn)已畫出函數(shù)在軸左側的圖象,如圖所示,請補全完整函數(shù)的圖象;
(3)根據(2)中畫出的函數(shù)圖像,直接寫出函數(shù)的單調區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠有4臺大型機器,在一個月中,一臺機器至多出現(xiàn)1次故障,且每臺機器是否出現(xiàn)故障是相互獨立的,出現(xiàn)故障時需1名工人進行維修,每臺機器出現(xiàn)故障需要維修的概率為.
(1)若出現(xiàn)故障的機器臺數(shù)為,求的分布列;
(2) 該廠至少有多少名工人才能保證每臺機器在任何時刻同時出現(xiàn)故障時能及時進行維修的概率不少于90%?
(3)已知一名工人每月只有維修1臺機器的能力,每月需支付給每位工人1萬元的工資,每臺機器不出現(xiàn)故障或出現(xiàn)故障能及時維修,就使該廠產生5萬元的利潤,否則將不產生利潤,若該廠現(xiàn)有2名工人,求該廠每月獲利的均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ( )的左右焦點分別為, ,離心率為,點在橢圓上, , ,過與坐標軸不垂直的直線與橢圓交于, 兩點, 為, 的中點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點,且,求直線所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據四川省民政廳報告,2013年6月29日以來,四川省中東部出現(xiàn)強降雨天氣過程,局地出現(xiàn)大暴雨.暴雨洪澇災害已造成遂寧、德陽、綿陽等12市34縣(市、區(qū))244萬人受災,共造成直接經濟損失85502.41萬元.適逢暑假,小王在某小區(qū)調查了50戶居民由于洪災造成的經濟損失,將收集的數(shù)據分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出頻率分布直方圖(如圖).
(1)若先從損失超過6000元的居民中隨機抽出2戶進行調查,求這2戶不在同一小組的概率;(2)洪災過后小區(qū)居委會號召小區(qū)居民為洪災重災區(qū)捐款,小王調查的50戶居民的捐款情況如表,在表格空白處填寫正確的數(shù)字,并說明是否有95%以上的把握認為捐款數(shù)額多于或少于500元和自身經濟損失是否到4000元有關?
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:臨界值表參考公式:K2=.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
(1)求函數(shù)在區(qū)間上的最小值;
(2)對一切實數(shù)恒成立,求實數(shù)的取值范圍;
(3)證明:對一切, 恒成立.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com