【題目】已知直線與橢圓交于不同的兩點.

1)若線段的中點為,求直線的方程;

2)若的斜率為,且過橢圓的左焦點,的垂直平分線與軸交于點,求證:為定值.

【答案】1;(2)證明見解析

【解析】

1)利用點差法可求得直線的斜率,進而求得直線的方程;

2)設,與橢圓方程聯(lián)立得到韋達定理的形式,進而表示出中點坐標;當時,易求得的值;當時,可得垂直平分線方程,進而求得點坐標和,利用弦長公式求得,進而求得的值;綜合兩種情況可知為定值.

1)設,

,兩式作差得:,

中點為,,

直線的方程為:,即:.

2)由橢圓方程知:,可設直線的方程:

聯(lián)立得:,

,,則,,

,,

時,,,;

時,的垂直平分線方程為:,

得:,,,

,

;

綜上所述:為定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知, .

(Ⅰ)若的必要條件,求實數(shù)的取值范圍;

(Ⅱ)若,“”為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐中,底面,,的中點,是線段上的一點,且,連接,.

(1)求證:平面;

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)若是函數(shù)的極值點,求的極小值;

2)若對任意的實數(shù)a,函數(shù)上總有零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】西安市自2017年5月啟動對“車不讓人行為”處罰以來,斑馬線前機動車搶行不文明行為得以根本改變,斑馬線前禮讓行人也成為了一張新的西安“名片”.

但作為交通重要參與者的行人,闖紅燈通行卻頻有發(fā)生,帶來了較大的交通安全隱患及機動車通暢率降低,交警部門在某十字路口根據(jù)以往的檢測數(shù)據(jù),得到行人闖紅燈的概率約為0.4,并從穿越該路口的行人中隨機抽取了200人進行調(diào)查,對是否存在闖紅燈情況得到列聯(lián)表如下:

30歲以下

30歲以上

合計

闖紅燈

60

未闖紅燈

80

合計

200

近期,為了整頓“行人闖紅燈”這一不文明及項違法行為,交警部門在該十字路口試行了對闖紅燈行人進行經(jīng)濟處罰,并從試行經(jīng)濟處罰后穿越該路口行人中隨機抽取了200人進行調(diào)查,得到下表:

處罰金額(單位:元)

5

10

15

20

闖紅燈的人數(shù)

50

40

20

0

將統(tǒng)計數(shù)據(jù)所得頻率代替概率,完成下列問題.

(Ⅰ)將列聯(lián)表填寫完整(不需寫出填寫過程),并根據(jù)表中數(shù)據(jù)分析,在未試行對闖紅燈行人進行經(jīng)濟處罰前,是否有99.9%的把握認為闖紅燈與年齡有關;

(Ⅱ)當處罰金額為10元時,行人闖紅燈的概率會比不進行處罰降低多少;

(Ⅲ)結合調(diào)查結果,談談如何治理行人闖紅燈現(xiàn)象.

參考公式: ,其中

參考數(shù)據(jù):

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.132

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,側面是邊長為2的等邊三角形且垂直于底面,,的中點.

1)求證:直線平面;

2)點在棱上,且二面角的余弦值為,求直線與底面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,,,,且.

1)求證:平面平面;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點到直線的距離比到點的距離大

1)求動點的軌跡的方程;

2上兩點,為坐標原點,,過分別作的兩條切線,相交于點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中,,,,將直角梯形沿對角線折起,使點點位置,則四面體的體積的最大值為________,此時,其外接球的表面積為________

查看答案和解析>>

同步練習冊答案