【題目】已知, .

1)求函數(shù)的增區(qū)間;

2)若函數(shù)有兩個零點,求實數(shù)的取值范圍,并說明理由;

3)設正實數(shù), 滿足,當時,求證:對任意的兩個正實數(shù), 總有.

(參考求導公式: )

【答案】(1)見解析;(2);(3)見解析.

【解析】試題分析:(1)求導,對進行分類討論,可得函數(shù)的增區(qū)間;

(2)由(1)知:若函數(shù)在的上為增函數(shù),函數(shù)有至多有一個零點,不合題意.若 可知,要使得函數(shù)有兩個零點,則 ,以下證明函數(shù)有兩個零點即可;(3)證明:不妨設,以為變量令

則可以證明 ,所以單調(diào)遞增;因為所以

這樣就證明了.

試題解析:(1)由已知,令,

時, ,函數(shù)的增區(qū)間

,

函數(shù)的增區(qū)間為

綜合以上:當時,函數(shù)的增區(qū)間;若增區(qū)間為

(2)由(1)知:若函數(shù)在的上為增函數(shù),函數(shù)有至多有一個零點,不合題意。

,函數(shù)在的上為減函數(shù)

,函數(shù)在的上為增函數(shù)

要使得函數(shù)有兩個零點,則

下證明: 函數(shù)有兩個零點

,所以存在惟一零點;

所以上遞增,

所以的 所以也存在惟一零點;

綜上: 函數(shù)有兩個零點

方法2:(先證: )

,所以也存在惟一零點;

綜上: ,函數(shù)有兩個零點。

(3)證明:不妨設,以為變量

,則

因為,所以;即在定義域內(nèi)遞增。

又因為所以,所以;又因為,所以

所以單調(diào)遞增;因為所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知.

I)若,求曲線在點處的切線方程.

II)若,求函數(shù)的單調(diào)區(qū)間.

III)若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)區(qū)間;

(2)當時,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知三棱柱中, 平面, 分別是棱的中點.

(1)求證: 平面

(2)求證: 平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)既有一個極小值又有一個極大值,求的取值范圍;

3)若存在,使得當時, 的值域是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】供電部門對某社區(qū)位居民201611月份人均用電情況進行統(tǒng)計后,按人均用電量分為, , , 五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是(

A. 11月份人均用電量人數(shù)最多的一組有

B. 11月份人均用電量不低于度的有

C. 11月份人均用電量為

D. 在這位居民中任選位協(xié)助收費,選到的居民用電量在一組的概率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,經(jīng)過橢圓 的一個焦點的直線相交于兩點, 的中點,且斜率是.

()求橢圓的方程;

()直線分別與橢圓和圓 相切于點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程為,曲線的參數(shù)方程為,( 為參數(shù)).

(1)將兩曲線化成普通坐標方程;

(2)求兩曲線的公共弦長及公共弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的方程為, 為常數(shù)).

(1)判斷曲線的形狀;

(2)設曲線分別與軸, 軸交于點, 不同于原點),試判斷的面積是否為定值?并證明你的判斷;

(3)設直線 與曲線交于不同的兩點, ,且,求的值.

查看答案和解析>>

同步練習冊答案