【題目】每年春節(jié),各地的餐館都出現(xiàn)了用餐需預(yù)定的現(xiàn)象,致使一些人在沒有預(yù)定的情況下難以找到用餐的餐館,針對(duì)這種現(xiàn)象,專家對(duì)人們的用餐地點(diǎn)及性別作出調(diào)查,得到的情況如下表所示:

在家用餐

在餐館用餐

總計(jì)

男性

30

女性

40

總計(jì)

50

100

1)完成上述列聯(lián)表;

2)根據(jù)表中的數(shù)據(jù),試通過計(jì)算判斷是否有的把握說明用餐地點(diǎn)與性別有關(guān)?

參考公式及數(shù)據(jù):,其中.

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)填表見解析(2)有的把握說明用餐地點(diǎn)與性別有關(guān)

【解析】

1)根據(jù)表格中數(shù)據(jù)的關(guān)系,完善列聯(lián)表;(2)根據(jù)表中數(shù)據(jù)計(jì)算觀測(cè)值,對(duì)照臨界值即可得出結(jié)論.

1)補(bǔ)充完整的2×2列聯(lián)表如下:

在家用餐

在餐館用餐

總計(jì)

男性

10

30

40

女性

40

20

60

總計(jì)

50

50

100

2)假設(shè)用餐地點(diǎn)與性別無關(guān),

因?yàn)?/span>的觀測(cè)值

=

因?yàn)?/span>,

所以有的把握說明用餐地點(diǎn)與性別有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下是我們常見的空間幾何體.

1 2 3 4 5 6 7 8 9)(10

11

1)以上幾何體中哪些是棱柱?

2)一個(gè)幾何體為棱柱的充要條件是什么?

3)如何求以上幾何體的表面積?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù),

(1)設(shè),求的單調(diào)區(qū)間;

(2)設(shè)導(dǎo)數(shù),

(i)證明:當(dāng)時(shí),;

(ii)設(shè)關(guān)于的方程的根為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的周長(zhǎng)為,離心率為 .

(1)求橢圓的方程;

(2)設(shè)橢圓C的右頂點(diǎn)和上頂點(diǎn)分別為A、B,斜率為的直線l與橢圓C交于P、Q兩點(diǎn)(點(diǎn)P在第一象限).若四邊形APBQ面積為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足an+1+﹣1nan=2n﹣1,則{an}的前60項(xiàng)和為( )

A. 3690 B. 3660 C. 1845 D. 1830

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為落實(shí)國(guó)家精準(zhǔn)扶貧政策,讓市民吃上放心蔬菜,某企業(yè)于2018年在其扶貧基地投入萬元研發(fā)資金,用于蔬菜的種植及開發(fā),并計(jì)劃今后十年內(nèi)在此基礎(chǔ)上,每年投入的資金比上一年增長(zhǎng)10%.

1)寫出第(2019年為第一年)該企業(yè)投入的資金數(shù)(萬元)的函數(shù)關(guān)系式,并指出函數(shù)的定義域;

2)該企業(yè)從第幾年開始(2019年為第一年),每年投入的資金數(shù)將超過萬元?

(參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的部分圖象如圖,M是圖象的一個(gè)最低點(diǎn),圖象與x軸的一個(gè)交點(diǎn)的坐標(biāo)為,與y軸的交點(diǎn)坐標(biāo)為.

(1)A,的值;

(2)若關(guān)于x的方程上有一解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)零點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在海岸線l一側(cè)P處有一個(gè)美麗的小島,某旅游公司為方便登島游客,在l上設(shè)立了M,N兩個(gè)報(bào)名接待點(diǎn),P,M,N三點(diǎn)滿足任意兩點(diǎn)間的距離為公司擬按以下思路運(yùn)作:先將M,N兩處游客分別乘車集中到MN之間的中轉(zhuǎn)點(diǎn)Q點(diǎn)Q異于MN兩點(diǎn),然后乘同一艘游輪由Q處前往P據(jù)統(tǒng)計(jì),每批游客報(bào)名接待點(diǎn)M處需發(fā)車2輛,N處需發(fā)車4輛,每輛汽車的運(yùn)費(fèi)為20,游輪的運(yùn)費(fèi)為120設(shè),每批游客從各自報(bào)名點(diǎn)到P島所需的運(yùn)輸總成本為T元.

寫出T關(guān)于的函數(shù)表達(dá)式,并指出的取值范圍;

問:中轉(zhuǎn)點(diǎn)Q距離M處多遠(yuǎn)時(shí),T最?

查看答案和解析>>

同步練習(xí)冊(cè)答案