分析 (1)利用直角坐標(biāo)與極坐標(biāo)互化方法將曲線C1與曲線C2化成極坐標(biāo)方程,利用|PN|最大值為$2\sqrt{2}$求r的值;
(2)${S_{四邊形}}={S_{△OPQ}}-{S_{△OMN}}=\frac{1}{2}OP•OQsin\frac{π}{4}-\frac{1}{2}OM•ONsin\frac{π}{4}$,利用三角函數(shù)知識求四邊形MNPQ面積的最大值.
解答 解:(1)曲線${C_1}:{(x-2)^2}+{(y-2)^2}=8$,極坐標(biāo)方程${C_1}:ρ=4\sqrt{2}sin(θ+\frac{π}{4})$,
曲線${C_2}:{x^2}+{y^2}={r^2}(0<r<4)$,極坐標(biāo)方程C2:ρ=r
$|PN|=|{ρ_P}-{ρ_N}|=|4\sqrt{2}sin(α+\frac{π}{4})-r{|_{max}}$=$2\sqrt{2}$,
∴$r=2\sqrt{2}$,∴${C_2}:ρ=2\sqrt{2}$…(4分)
(2)${S_{四邊形}}={S_{△OPQ}}-{S_{△OMN}}=\frac{1}{2}OP•OQsin\frac{π}{4}-\frac{1}{2}OM•ONsin\frac{π}{4}$
=$\frac{1}{2}×4\sqrt{2}sin(α+\frac{π}{4})×4\sqrt{2}sin(α+\frac{π}{2})×\frac{\sqrt{2}}{2}$-$\frac{1}{2}×2\sqrt{2}×2\sqrt{2}×\frac{\sqrt{2}}{2}$
=4$\sqrt{2}$sin(2$α+\frac{π}{4}$)+4-2$\sqrt{2}$
當(dāng)$α=\frac{π}{8}$時,面積的最大值為$4+2\sqrt{2}$…(6分)
點評 本題考查直角坐標(biāo)與極坐標(biāo)互化,考查三角函數(shù)知識,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m≤0 | B. | m≤-1 | C. | m≥2 | D. | m≤-$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直角三角形 | B. | 等邊三角形 | C. | 等腰三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com