已知函數(shù)f(x)=6x–6x2,設(shè)函數(shù)g1(x)=f(x), g2(x)=fg1(x)], g3(x)=f g2(x)],…gn(x)=fgn–1(x)],…

(1)求證:如果存在一個(gè)實(shí)數(shù)x0,滿足g1(x0)=x0,那么對(duì)一切n∈N,gn(x0)=x0都成立;

(2)若實(shí)數(shù)x0滿足gn(x0)=x0,則稱x0為穩(wěn)定不動(dòng)點(diǎn),試求出所有這些穩(wěn)定不動(dòng)點(diǎn);

(3)設(shè)區(qū)間A=(–∞,0),對(duì)于任意x∈A,有g1(x)=f(x)=a<0, g2(x)=fg1(x)]=f(0)<0,

n≥2時(shí),gn(x)<0  試問是否存在區(qū)間BAB),對(duì)于區(qū)間內(nèi)任意實(shí)數(shù)x,只要n≥2,都有gn(x)<0.

(1)證明略, (2) 穩(wěn)定不動(dòng)點(diǎn)為0和(3)只要n≥2,n∈N,都有gn(x)<0


解析:

(1)證明: 當(dāng)n=1時(shí),g1(x0)=x0顯然成立;

設(shè)n=k時(shí),有gk(x0)=x0(k∈N)成立,

gk+1(x0)=fgk(x0)]=f(x0)=g1(x0)=x0

n=k+1時(shí),命題成立.

∴對(duì)一切n∈N,若g1(x0)=x0,則gn(x0)=x0.

(2)解:由(1)知,穩(wěn)定不動(dòng)點(diǎn)x0只需滿足f(x0)=x0

f(x0)=x0,得6x0–6x02=x0,∴x0=0或x0=

∴穩(wěn)定不動(dòng)點(diǎn)為0和.

(3)解:∵f(x)<0,得6x–6x2<0x<0或x>1.

gn(x)<0fgn–1(x)]<0gn–1(x)<0或gn–1(x)>1

要使一切n∈N,n≥2,都有gn(x)<0,必須有g1(x)<0或g1(x)>1.

g1(x)<06x–6x2<0x<0或x>1

g1(x)>06x–6x2>1

故對(duì)于區(qū)間()和(1,+∞)內(nèi)的任意實(shí)數(shù)x,

只要n≥2,n∈N,都有gn(x)<0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-cosx+cos(
π
2
-x)

(1)若x∈[0,π],求函數(shù)f(x)的最大值與最小值及此時(shí)x的值;
(2)若x∈(0,
π
6
)
,且sin2x=
1
3
,求f(x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東至縣一模)已知函數(shù)f(x)=2
3
sin(
x
2
+
π
4
)cos(
x
2
+
π
4
)-sin(x+π)

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若將f(x)的圖象按向量
a
=(
π
6
,0)平移得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,π]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+2,(x≤-2)
x2,(-2<x<2)
2x,(x≥2)
若f(a)=8,則a等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=6-
3
2
a+(3-a)sinx-
1
2
acos2x
,
(Ⅰ)若a>0,x∈[0,
π
2
]
,求f(x)的最小值;
(Ⅱ)若x∈[0,2π)時(shí),f(x)的圖象與x軸有四個(gè)不同的交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=6-
3
2
a+(3-a)sinx-
1
2
acos2x
,
(Ⅰ)若a>0,x∈[0,
π
2
]
,求f(x)的最小值;
(Ⅱ)若x∈[0,2π)時(shí),f(x)的圖象與x軸有四個(gè)不同的交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案