20.在Rt△ABC中,∠C=90°,$sinA=\frac{5}{13}$,則tanB的值為( 。
A.$\frac{12}{13}$B.$\frac{5}{12}$C.$\frac{13}{12}$D.$\frac{12}{5}$

分析 根據(jù)題意作出直角△ABC,然后根據(jù)sinA=$\frac{5}{13}$,設(shè)一條直角邊BC為5x,斜邊AB為13x,根據(jù)勾股定理求出另一條直角邊AC的長(zhǎng)度,然后根據(jù)三角函數(shù)的定義可求出tan∠B.

解答 解:∵sinA=$\frac{5}{13}$,
∴設(shè)BC=5x,AB=13x,
則AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=12x,
故tan∠B=$\frac{AC}{BC}$=$\frac{12}{5}$.
故選:D.

點(diǎn)評(píng) 本題考查了互余兩角三角函數(shù)的關(guān)系,屬于基礎(chǔ)題,解題的關(guān)鍵是掌握三角函數(shù)的定義和勾股定理的運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.小明想沏壺茶喝,當(dāng)時(shí)的情況是,開水沒有,燒開水需要15分鐘,燒開水的壺要洗,需要1分鐘,沏茶的壺和茶杯要洗,需2分鐘,茶葉已有,取茶葉需1分鐘,沏茶也需1分鐘,小明要喝到自己所沏的茶至少需要花的時(shí)間為(  )
A.16分鐘B.19分鐘C.20分鐘D.17分鐘

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.一底面半徑為r,母線長(zhǎng)為3r的圓錐內(nèi)有一內(nèi)接正方體,則該正方體的表面積為$\frac{16{r}^{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某交警大隊(duì)對(duì)轄區(qū)A路段在連續(xù)10天內(nèi)的n天,對(duì)過往車輛駕駛員進(jìn)行血液酒精濃度檢查,查得駕駛員酒駕率f(n)如表;
n56789
f(n)0.060.060.050.040.02
可用線性回歸模型擬合f(n)與n的關(guān)系.
(1)建立f(n)關(guān)于n的回歸方程;
(2)該交警大隊(duì)將在2016年12月11日至20日和21日至30日對(duì)A路段過往車輛駕駛員進(jìn)行血液酒精濃度檢查,分別檢查n1,n2天,其中n1,n2都是從8,9,10中隨機(jī)選擇一個(gè),用回歸方程結(jié)果求兩階段查得的駕駛員酒駕率都不超過0.03的概率.
附注:
參考數(shù)據(jù):$\sum_{n=5}^9{nf(n)=1.51}$,$\sum_{n=5}^9{{n^2}=255}$,$\overline{f(n)}$=0.046,回歸方程$\widehat{f(n)}$=$\widehat$n+$\widehat{a}$中斜率和截距最小乘估計(jì)公式分別為:$\widehatb=\frac{{\sum_{n=5}^9{nf(n)-5\overline{nf(n)}}}}{{\sum_{n=5}^9{{n^2}-5{{\overline n}^2}}}}$,$\widehata=\overline{f(n)}$-$\widehatb\overline n$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知一個(gè)袋中裝有大小相同的4個(gè)紅球,3個(gè)白球,3個(gè)黃球.若任意取出2個(gè)球,則取出的2個(gè)球顏色相同的概率是$\frac{4}{15}$;若有放回地任意取10次,每次取出一個(gè)球,則取到紅球個(gè)數(shù)X的方差為2.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知f(x)=$\left\{\begin{array}{l}{x+5(x>1)}\\{2{x}^{2}+1(x≤1)}\end{array}\right.$,則f[f(1)]=8.如果f(x)=5,則x=-$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.雙曲線$\frac{x^2}{9}-\frac{y^2}{m}=1$的焦距是10,則實(shí)數(shù)m的值為16,其雙曲線漸進(jìn)線方程為y=±$\frac{4}{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓$C:\frac{x^2}{4}+\frac{y^2}{9}=1$,動(dòng)直線$l:y=\frac{3}{2}x+m$
(1)若動(dòng)直線l與橢圓C相交,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)動(dòng)直線l與橢圓C相交時(shí),證明:這些直線被橢圓截得的線段的中點(diǎn)都在直線3x+2y=0上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知一個(gè)底面置于水平面上的圓錐,其左視圖是邊長(zhǎng)為6的正三角形,則該圓錐的側(cè)面積為18π.

查看答案和解析>>

同步練習(xí)冊(cè)答案