設(shè)拋物線,為焦點(diǎn),為準(zhǔn)線,準(zhǔn)線與軸交點(diǎn)為
(1)求;
(2)過(guò)點(diǎn)的直線與拋物線交于兩點(diǎn),直線與拋物線交于點(diǎn).
①設(shè)三點(diǎn)的橫坐標(biāo)分別為,計(jì)算:及的值;
②若直線與拋物線交于點(diǎn),求證:三點(diǎn)共線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
過(guò)點(diǎn)的直線交直線于,過(guò)點(diǎn)的直線交軸于點(diǎn),,.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)直線l與相交于不同的兩點(diǎn)、,已知點(diǎn)的坐標(biāo)為(-2,0),點(diǎn)Q(0,)在線段的垂直平分線上且≤4,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系O中,直線與拋物線=2相交于A、B兩點(diǎn)。
(1)求證:命題“如果直線過(guò)點(diǎn)T(3,0),那么=3”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,如圖,已知橢圓C:的上、下頂點(diǎn)分別為A、B,點(diǎn)P在橢圓C上且異于點(diǎn)A、B,直線AP、PB與直線l:y=-2分別交于點(diǎn)M、N.
(1)設(shè)直線AP、PB的斜率分別為k1,k2,求證:k1·k2為定值;
(2)求線段MN長(zhǎng)的最小值;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以MN為直徑的圓是否經(jīng)過(guò)某定點(diǎn)?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知兩點(diǎn)及,點(diǎn)在以、為焦點(diǎn)的橢圓上,且、、構(gòu)成等差數(shù)列.
(1)求橢圓的方程;
(2)如圖7,動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn)是直線上的兩點(diǎn),且,. 求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,左端點(diǎn)為
(1)求橢圓的方程;
(2)過(guò)橢圓的右焦點(diǎn)且斜率為的直線被橢圓截的弦長(zhǎng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,以軸為始邊作兩個(gè)銳角,它們的終邊分別交單位圓于兩點(diǎn).已知兩點(diǎn)的橫坐標(biāo)分別是,.
(1)求的值;(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,又知此拋物線上一點(diǎn)A(4,m)到焦點(diǎn)的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點(diǎn)A、B,且AB中點(diǎn)橫坐標(biāo)為2,求k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com