【題目】若圓x2+y2+2x﹣4y=0關(guān)于直線3x+y+m=0對(duì)稱,則實(shí)數(shù)m的值為( )
A.﹣3
B.﹣1
C.1
D.3
【答案】C
【解析】解:∵圓x2+y2+2x﹣4y=0關(guān)于直線3x+y+m=0對(duì)稱,
∴圓心在直線3x+y+m=0上,
求圓心的坐標(biāo)(﹣1,2),可得(﹣1)×3+2+m=0,解之得a=1,
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解圓的一般方程的相關(guān)知識(shí),掌握?qǐng)A的一般方程的特點(diǎn):(1)①x2和y2的系數(shù)相同,不等于0.②沒(méi)有xy這樣的二次項(xiàng);(2)圓的一般方程中有三個(gè)特定的系數(shù)D、E、F,因之只要求出這三個(gè)系數(shù),圓的方程就確定了;(3)、與圓的標(biāo)準(zhǔn)方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標(biāo)準(zhǔn)方程則指出了圓心坐標(biāo)與半徑大小,幾何特征較明顯.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知l,m是兩條不同的直線,α,β是兩個(gè)不同的平面.下列命題:
①若lα,mα,l∥β,m∥β,則α∥β;
②若lα,l∥β,α∩β=m,則l∥m;
③若α∥β,l∥α,則l∥β;
④若l⊥α,m∥l,α∥β,則m⊥β.
其中真命題是(寫(xiě)出所有真命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義“規(guī)范01數(shù)列”{an}如下:{an}共有2m項(xiàng),其中m項(xiàng)為0,m項(xiàng)為1,且對(duì)任意k≤2m,a1 , a2…ak中0的個(gè)數(shù)不少于1的個(gè)數(shù).若m=4,則不同的“規(guī)范01數(shù)列”共有個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】曲線y=x2+2x在點(diǎn)(1,3)處的切線方程是( )
A.4x﹣y﹣1=0
B.3x﹣4y+1=0
C.3x﹣4y+1=0
D.4y﹣3x+1=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等比數(shù)列{an} 中,a1=4,公比為q,前n項(xiàng)和為Sn , 若數(shù)列{Sn+2}也是等比數(shù)列,則q等于( )
A.2
B.﹣2
C.3
D.﹣3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)唯一的一個(gè)零點(diǎn)同時(shí)在區(qū)間(0,16)、(0,8)、(0,4)、(0,2)內(nèi),那么下列命題中正確的是( )
A.函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn)
B.函數(shù)f(x)在區(qū)間(0,1)或(1,2)內(nèi)有零點(diǎn)
C.函數(shù)f(x)在區(qū)間[2,16)內(nèi)無(wú)零點(diǎn)
D.函數(shù)f(x)在區(qū)間(1,16)內(nèi)無(wú)零點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=2ax+1+3(a>0且a≠1)的圖象經(jīng)過(guò)的定點(diǎn)坐標(biāo)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,值域?yàn)閇0,+∞)的偶函數(shù)是( )
A.y=x2﹣1
B.y=|x|
C.y=lgx
D.y=cosx
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com