【題目】如圖,點列{An}、{Bn}分別在銳角兩邊(不在銳角頂點),且|AnAn+1|=|An+1An+2|,An≠An+2 , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N*(P≠Q(mào)表示點P與Q不重合),若dn=|AnBn|,Sn為△AnBnBn+1的面積,則(

A.{dn}是等差數(shù)列
B.{Sn}是等差數(shù)列
C.{d }是等差數(shù)列
D.{S }是等差數(shù)列

【答案】B
【解析】解:設銳角的頂點為O,|OA1|=a,|OB1|=c,
|AnAn+1|=|An+1An+2|=b,|BnBn+1|=|Bn+1Bn+2|=d,
由于a,c不確定,則{dn}不一定是等差數(shù)列,
{dn2}不一定是等差數(shù)列,
設△AnBnBn+1的底邊BnBn+1上的高為hn
由三角形的相似可得 = = = = ,
兩式相加可得, = =2,
即有hn+hn+2=2hn+1 ,
由Sn= dhn , 可得Sn+Sn+2=2Sn+1 ,
即為Sn+2﹣Sn+1=Sn+1﹣Sn ,
則數(shù)列{Sn}為等差數(shù)列.
故選:B.
【考點精析】本題主要考查了數(shù)列的定義和表示的相關知識點,需要掌握數(shù)列中的每個數(shù)都叫這個數(shù)列的項.記作an,在數(shù)列第一個位置的項叫第1項(或首項),在第二個位置的叫第2項,……,序號為n的項叫第n項(也叫通項)記作an才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】《中國詩詞大會》節(jié)目組決定把《將進酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外確定的兩首詩詞排在后六場,并要求《將進酒》與《望岳》相鄰,且《將進酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰,且均不排在最后,則后六場開場詩詞的排法有_____________種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“龜兔賽跑”講述了這樣的故事:領先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當它醒來時,發(fā)現(xiàn)烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達了終點.用分別表示烏龜和兔子所行的路程,為時間,則與故事情節(jié)相吻合的是( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=.

(1)判斷函數(shù)f(x)的奇偶性;

(2)判斷并用定義證明函數(shù)f(x)在其定義域上的單調(diào)性.

(3)若對任意的t1,不等式f()+f()<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= 若f(x)恰有2個零點,則實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是函數(shù)的導函數(shù)的圖象,給出下列命題:

①-2是函數(shù)的極值點;

②1是函數(shù)的極值點;

的圖象在處切線的斜率小于零;

④函數(shù)在區(qū)間上單調(diào)遞增.

則正確命題的序號是( )

A. ①③ B. ②④ C. ②③ D. ①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中,若僅存在兩個的整數(shù)使得,則實數(shù)的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,橢圓C的參數(shù)方程為 (θ為參數(shù)).
(1)以原點為極點,x軸的正半軸為極軸建立極坐標系,求橢圓C的極坐標方程;
(2)設M(x,y)為橢圓C上任意一點,求x+2y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】計算機在數(shù)據(jù)處理時使用的是二進制,例如十進制的1、2、3、4在二進制分別表示為1、10、11、100.下面是某同學設計的將二進制數(shù)11111化為十進制數(shù)的一個流程圖,則判斷框內(nèi)應填入的條件是(
A.i>4
B.i≤4
C.i>5
D.i≤5

查看答案和解析>>

同步練習冊答案