已知動點M到點F(,0)的距離與到直線的距離之比為

(1)求動點M的軌跡C的方程;

(2)若過點E(0,1)的直線與曲線C在y軸左側(cè)交于不同的兩點A、B,點P(―2,0)滿足,求直線PN在y軸上的截距d的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知動點M到點F(1,0)的距離,等于它到直線x=-1的距離.
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)過點F任意作互相垂直的兩條直線l1,l2,分別交曲線C于點A,B和M,N.設(shè)線段AB,MN的中點分別為P,Q,求證:直線PQ恒過一個定點;
(Ⅲ)在(Ⅱ)的條件下,求△FPQ面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點M到點F(-
2
,0)的距離與到直線x=-
2
2
的距離之比為
2

(1)求動點M的軌跡C的方程;
(2)若過點E(0,1)的直線與曲線C在y軸左側(cè)交于不同的兩點A、B,點P(-2,0)滿足
PN
=
1
2
(
PA
+
PB
)
,求直線PN在y軸上的截距d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•深圳二模)已知動點 M 到點 F(0,1)的距離與到直線 y=4 的距離之和為 5.
(1)求動點 M 的軌跡 E 的方程,并畫出圖形;
(2)若直線 l:y=x+m 與軌跡 E 有兩個不同的公共點 A、B,求m的取值范圍;
(3)在(2)的條件下,求弦長|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點M到點F(1,0)的距離比它到y(tǒng)軸的距離大1個單位長度.
(1)求點M的軌跡C的方程;
(2)過點F任意作互相垂直的兩條直線l1,l2,分別交曲線C于點A、B和M、N,設(shè)線段AB、MN的中點分別為P、Q,求證:直線PQ恒過一個定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶三模)已知動點M到點F(
p
2
,0)(p>0)
的距離比它到y(tǒng)軸的距離多
p
2

(I)求動點M的軌跡方程;
(II)設(shè)動點M的軌跡為C,過點F的直線l與曲線C交于A、B兩點,若y軸正半軸上存在點P使得△PAB是以P為直角頂點的等腰直角三角形,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案