【題目】橢圓上一點A關于原點的對稱點為B,F(xiàn)為橢圓的右焦點,AF⊥BF,∠ABF=,,,則橢圓的離心率的取值范圍為_______.
【答案】
【解析】
設左焦點為F′,根據(jù)橢圓定義:|AF|+|AF′|=2a,根據(jù)B和A關于原點對稱可知|BF|=|AF′|,推知|AF|+|BF|=2a,又根據(jù)O是Rt△ABF的斜邊中點可知|AB|=2c,在Rt△ABF中用a和c分別表示出|AF|和|BF|代入|AF|+|BF|=2a中即可表示出即離心率e,進而根據(jù)α的范圍確定e的范圍.
∵B和A關于原點對稱,∴B也在橢圓上,設左焦點為F′
根據(jù)橢圓定義:|AF|+|AF′|=2a
又∵|BF|=|AF′|∴|AF|+|BF|=2a …①
O是Rt△ABF的斜邊中點,∴|AB|=2c
又|AF|=2csinα …②
|BF|=2ccosα …③
②③代入①2csinα+2ccosα=2a
∴=
即e==
∵a∈[,],∴≤α+≤
∴≤sin(α+)≤1 ∴≤e≤
故答案為:[,]
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)上是減函數(shù),求實數(shù)a的最小值;
(Ⅲ)若,使()成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將各位數(shù)字和為8的全體正整數(shù)按自小到大的順序排成一個數(shù)列,稱為P數(shù)列.則2015為其中第________項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(1)求橢圓C的標準方程;
(2)點P是橢圓上異于短軸端點A,B的任意一點,過點P作軸于Q,線段PQ的中點為M.直線AM與直線交于點N,D為線段BN的中點,設O為坐標原點,試判斷以OD為直徑的圓與點M的位置關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以軸為始邊做兩個銳角,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標分別為
(1)求的值; (2)求的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把編號為1,2,3,4的四個大小、形狀相同的小球,隨機放入編號為1,2,3,4的四個盒子里.每個盒子里放入一個小球.
(1)求恰有兩個球的編號與盒子的編號相同的概率;
(2)設小球的編號與盒子編號相同的情況有種,求隨機變量的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個盒子中裝有大小相同的小球個,在小球上分別標有1,2,3…,的號碼,已知從盒子中隨機取出兩個球,兩球號碼的最大值為的概率為.
(Ⅰ)盒子中裝有幾個小球?
(Ⅱ)現(xiàn)從盒子中隨機地取出4個球,記所取4個球的號碼中,連續(xù)自然數(shù)的個數(shù)的最大值為隨機變量(如取標號分別為2,4,6,8的小球時;取標號分別為1,2,4,6的小球時;取標號分別為1,2,3,5的小球時),求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若都是從集合中任取的一個數(shù),求函數(shù)有零點的概率;
(2)若都是從區(qū)間上任取的一個數(shù),求成立的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com