如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中點,已知AB=2,AD=2
2
,PA=2,
求:(Ⅰ)三角形PCD的面積;
    (II)三棱錐P-ABE的體積.
分析:(Ⅰ)只要證明CD⊥平面PAD即可.
(Ⅱ)取PB的中點,得EH為△PBC的中位線,可得EH與BC的關(guān)系,而可證明BC⊥平面PAB,因此EH為平面PAB上的高,進而可計算出體積.
解答:解:(Ⅰ)∵PA⊥底面ABCD,∴PA⊥CD.
由矩形ABCD可得CD⊥AD,
又∵PA∩AD=A,
∴CD⊥平面PAD,∴CD⊥PD.
∴△PCD是一個直角三角形,PD=
22+(2
2
)2
=2
3

∴S△PCD=
1
2
×2×2
3
=2
3

( II)如圖,設(shè)PB的中點為H,又E為PC的中點,由三角形的中位線定理,得EH∥BC,EH=
1
2
BC
=
2

由PA⊥底面ABCD,∴PA⊥BC.
由矩形ABCD得BC⊥AB.
又PA∩AB=A,∴BC⊥平面PAB.
所以HE為三棱錐P-ABE的高,因此可得VP-ABE=VE-PAB=
1
3
×
1
2
×2×2×
2
=
2
2
3
點評:本題考查面積與體積的計算,理解線面垂直的判定與性質(zhì)是解決問題的關(guān)鍵.同時注意三角形的中位線定理的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習(xí)冊答案