已知a是方程3x2-4x+1=0的根,指數(shù)函數(shù)f(x)=ax若實(shí)數(shù)m>n,則f(m),f(n)的大小關(guān)系為
 
考點(diǎn):函數(shù)的零點(diǎn)與方程根的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:求出a=1,a=
1
3
,可得a=
1
3
,根據(jù)單調(diào)性可得.
解答: 解:∵方程3x2-4x+1=0的根為1,
1
3
,
∴a=1,a=
1
3
,
∵指數(shù)函數(shù)f(x)=ax
∴a=
1
3
,
∵若實(shí)數(shù)m>n,
∴f(m)<f(n)
故答案為:f(m)<f(n)
點(diǎn)評(píng):本題考查了指數(shù)函數(shù)的單調(diào)性,方程的根,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是f1(x)=4x+1,f2(x)=x+2,f3(x)=-2x+4三個(gè)函數(shù)的最小值,則f(x)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖設(shè)計(jì)一幅矩形宣傳畫,要求畫面(陰影部分)面積為4840cm2,畫面上下邊要留8cm空白,左右要留5cm空白,怎樣確定畫面的高與寬的尺寸,才能使宣傳畫所用紙張面積最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)多年的運(yùn)作,“雙十一”搶購(gòu)活動(dòng)已經(jīng)演變成為整個(gè)電商行業(yè)的大型集體促銷盛宴.為迎接2014年“雙十一”網(wǎng)購(gòu)狂歡節(jié),某廠商擬投入適當(dāng)?shù)膹V告費(fèi),對(duì)網(wǎng)上所售產(chǎn)品進(jìn)行促銷.經(jīng)調(diào)查測(cè)算,該促銷產(chǎn)品在“雙十一”的銷售量P萬(wàn)件與促銷費(fèi)用x萬(wàn)元滿足P=3-
2
x+1
(其中0≤x≤a,a為正常數(shù)).已知生產(chǎn)該批產(chǎn)品P萬(wàn)件還需投入成本10+2P萬(wàn)元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為(4+
20
P
)
元/件,假定廠家的生產(chǎn)能力完全能滿足市場(chǎng)的銷售需求.
(Ⅰ)將該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為促銷費(fèi)用x萬(wàn)元的函數(shù);
(Ⅱ)促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
5
-
y2
4
=1的右焦點(diǎn)為F,P是雙曲線右支上任意一點(diǎn),定點(diǎn)M(6,2),則3|PM|+
5
|PF|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx+1,g(x)=ax-1-lnx
(Ⅰ)求f(x)的最小值;
(Ⅱ)討論函數(shù)g(x)的單調(diào)性;
(Ⅲ)是否存在常數(shù)K,使
K
f(x)
≤ex-f'(x)恒成立,若存在,求出K的最大值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=5,S5=55.
(Ⅰ)求an及Sn;
(Ⅱ)若數(shù)列{
4
an2-1
}的前n項(xiàng)和Tn,試求Tn并證明不等式
1
2
≤Tn<1成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以圓x2+2x+y2=0的圓心為圓心,半徑為2的圓的方程是(  )
A、(x-1)2+y2=4
B、(x-1)2+y2=2
C、(x+1)2+y2=2
D、(x+1)2+y2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在地面A處測(cè)得樹梢的仰角為60°,A與樹底部B相距為5米,則樹高度(  )
A、5
3
B、5米
C、10米
D、
5
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案