設(shè)f(x)是奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(-3)=0,則(x-1)•f(x)<0的解集是( 。
分析:利用函數(shù)奇偶性和單調(diào)性之間的關(guān)系得到不等式f(x)>0和f(x)<0的解,然后將不等式(x-1)•f(x)<0轉(zhuǎn)化為
x-1>0
f(x)<0
x-1<0
f(x)>0
,進行求解.
解答:解:∵f(x)是奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),
∴f(x)在(-∞,0)內(nèi)是增函數(shù),
∵f(-3)=-f(3)=0,
∴f(3)=0.
則當(dāng)-3<x<0或x>3時,f(x)>0,
當(dāng)0<x<3或x<-3時,f(x)<0,
則不等式(x-1)•f(x)<0等價為:
x-1>0
f(x)<0
①或
x-1<0
f(x)>0
,②
由①得
x-1>0
0<x<3或x<-3
,即
x>1
0<x<3或x<-3
解得1<x<3.
由②得
x-1<0
-3<x<0或x>3
x<1
-3<x<0或x>3
解得-3<x<0.
綜上:1<x<3或-3<x<0.
故不等式的解集為:(1,3)∪(-3,0).
點評:本題主要考查函數(shù)奇偶性和單調(diào)性之間的關(guān)系的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
-2x+a2x+1+b
(a,b為實常數(shù)).
(1)當(dāng)a=b=1時,證明:f(x)不是奇函數(shù);
(2)設(shè)f(x)是奇函數(shù),求a與b的值;
(3)求(2)中函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是奇函數(shù),且當(dāng)x>0時,f(x)=
1x
,則當(dāng)x<0時,f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

12、設(shè)f(x)是奇函數(shù),且當(dāng)x<0時,f(x)=x2+x,則當(dāng)x>0時,f(x)=
-x2+x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f (x)是奇函數(shù),對任意的實數(shù)x、y,有f(x+y)=f(x)+f(y),當(dāng)x>0時,f (x)<0,則f (x)在區(qū)間[a,b]上( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知f (x+1)=x2+4x+1,求f (x);
(2)已知f (x-
1
x
)=x2+
1
x2
+1,求f (x);
(3)設(shè)f(x)是奇函數(shù),g(x)是偶函數(shù),并且f(x)-g(x)=x2-x,求f(x).

查看答案和解析>>

同步練習(xí)冊答案