分析 (I)利用等差數(shù)列的通項(xiàng)公式與求和公式可得an.bn+1=2bn+1,變形為bn+1+1=2(bn+1),利用等比數(shù)列的通項(xiàng)公式即可得出.
(II)cn=$\frac{a_n}{{{b_n}+1}}$=$\frac{n}{{2}^{n}}$,利用“錯位相減法”與等比數(shù)列的求和公式即可得出.
解答 解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,
由a2=2,S5=15,∴$\left\{\begin{array}{l}{{a}_{1}+d=2}\\{5{a}_{1}+\frac{5×4}{2}d=15}\end{array}\right.$,解得a1=d=1,
∴an=n.
∵bn+1=2bn+1,
∴bn+1+1=2(bn+1),${b_n}+1=2•{2^{n-1}}$,∴${b_n}={2^n}-1$.
(II)cn=$\frac{a_n}{{{b_n}+1}}$=$\frac{n}{{2}^{n}}$,
∴${T_n}=\frac{1}{2^1}+\frac{2}{2^2}+\frac{3}{2^3}+…+\frac{n}{2^n}$,
$\frac{1}{2}{T_n}=\frac{1}{2^2}+\frac{2}{2^3}+\frac{3}{2^4}+…+\frac{n}{{{2^{n+1}}}}$,
兩式相減得,${T_n}=2-\frac{1}{{{2^{n-1}}}}-\frac{n}{2^n}$.
點(diǎn)評 本題考查了“錯位相減法”、等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2)∪(-∞,1) | B. | (1,2) | C. | (-∞,1) | D. | (1,2)∪(-∞,1)∪(-1,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4個 | B. | 8個 | C. | 16個 | D. | 32個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com