a
x
+
x
9的展開(kāi)式中常數(shù)項(xiàng)為672,則展開(kāi)式中的x3的系數(shù)為
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專(zhuān)題:
分析:在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng),再根據(jù)常數(shù)項(xiàng)等于672求得實(shí)數(shù)a的值,再根據(jù)通項(xiàng)公式,可得展開(kāi)式中的x3的系數(shù)
解答: 解:(
a
x
+
x
9的展開(kāi)式的通項(xiàng)公式為T(mén)r+1=
C
r
9
a9-rx
3r
2
-9

3r
2
-9=0,求得r=6,
故展開(kāi)式中常數(shù)項(xiàng)為
C
6
9
•a3=672,求得a=2.
3r
2
-9=3,求得r=8,故展開(kāi)式中的x3的系數(shù)
C
8
9
×2=18,
故答案為:18.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的直線與拋物線交于A、B兩點(diǎn)
(1)若直線AB斜率為1,且|AB|=4,求p;
(2)若p=2,求線段AB中點(diǎn)G的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x),g(x)分別為定義在R上的奇函數(shù)和偶函數(shù),且f(x)-g(x)=x2-x+3,則f(1)+g(1)=( 。
A、5B、-5C、3D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b為正實(shí)數(shù),直線x+y+a=0與圓(x-b)2+(y-1)2=2相切,則
a2
b+1
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若a2+b2+c2+1=2(a+bc),且13sinA=12,則它的三邊長(zhǎng)分別是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下面數(shù)列的特點(diǎn),用適當(dāng)?shù)臄?shù)填空,并寫(xiě)出各數(shù)列的一個(gè)通項(xiàng)公式
(1)( 。4,9,( 。,25,( 。,49;
(2)1,
2
,( 。2,
5
,( 。,
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在數(shù)列{an}中a1=5,a2=2,an=2an-1+3an-2,求{an}前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}為等差數(shù)列,且a5=14,a7=20,數(shù)列{bn}的前n項(xiàng)和為Sn,b1=
2
3
且3Sn=Sn-1+2(n≥2,n∈N).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若cn=an•bn,n=1,2,3,…,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的函數(shù)且滿(mǎn)足f(x+
3
2
)=-f(x).若x∈(0,3)時(shí)f(x)=log2(3x+1),則f(2011)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案