【題目】設(shè)橢圓C: 的一個頂點與拋物線: 的焦點重合,分別是橢圓的左、右焦點,離心率 ,過橢圓右焦點的直線l與橢圓C交于M、N兩點.

(1)求橢圓C的方程;

(2)是否存在直線l,使得 ,若存在,求出直線l的方程;若不存在,說明理由;

【答案】(1);(2)yx﹣1)

【解析】

(1)根據(jù)拋物線的焦點求得的值,利用離心率和列方程,解方程后可求得的值,進而求得橢圓方程.(2)當(dāng)斜率為零時,驗證,不符合題意.當(dāng)斜率不為零時,設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫出韋達定理,計算,可求得直線的斜率,由此求得直線的方程.

解:(I)由已知得b

e

a2=3,

∴橢圓C的方程為:;;

(II)若直線l的斜率為0,則3(舍去);

若直線斜率不為0,設(shè)直線l的方程為:x=my+1,

代入橢圓C的方程,消去y整理得:

(3+2m2y2+4my﹣4=0,

設(shè)Mx1,y1),Nx2,y2),

則有:y1+y2,y1y2,

又∵x1=my1+1,x2=my2+1,

x1x2+y1y2

=(my1+1)(my2+1)+y1y2

=(1+m2y1y2+my1+y2)+1

=(1+m2)()+m)+1

=﹣1,

解得m

∴直線l方程為:yx﹣1);

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型企業(yè)針對改善員工福利的,,三種方案進行了問卷調(diào)查,調(diào)查結(jié)果如下:

支持方案

支持方案

支持方案

35歲以下的人數(shù)

200

400

800

35歲及以上的人數(shù)

100

100

400

1)從所有參與調(diào)查的人中,用分層隨機抽樣的方法抽取人,已知從支持方案的人中抽取了6人,求的值.

2)從支持方案的人中,用分層隨機抽樣的方法抽取5人,這5人中年齡在35歲及以上的人數(shù)是多少?年齡在35歲以下的人數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線的一個焦點恰好與拋物線的焦點重合,且兩曲線的一個交點為,若,則雙曲線的方程為( 。

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對平面區(qū)域,用表示屬于的所有整點(即平面上坐標(biāo)都是整數(shù)的點)的個數(shù).表示由曲線和兩直線所圍成的區(qū)域(包括邊界);表示由曲線和兩直線所圍成的區(qū)域(包括邊界).______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求曲線在點處的切線方程;

(2)令,討論的單調(diào)性.

(3)當(dāng)時,恒成立,求實數(shù)的取值范圍.( 為自然對數(shù)的底數(shù), …).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從高一年級的一次月考成績中隨機抽取了 50名學(xué)生的成績(滿分100分,且抽取的學(xué)生成績都在內(nèi)),按成績分為,,五組,得到如圖所示的頻率分布直方圖.

1)用分層抽樣的方法從月考成績在內(nèi)的學(xué)生中抽取6人,求分別抽取月考成績在內(nèi)的學(xué)生多少人;

2)在(1)的前提下,從這6名學(xué)生中隨機抽取2名學(xué)生進行調(diào)查,求月考成績在內(nèi)至少有1名學(xué)生被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周髀算經(jīng)》 是我國古代的天文學(xué)和數(shù)學(xué)著作。其中一個問題的大意為:一年有二十四個節(jié)氣(如圖),每個節(jié)氣晷長損益相同(即物體在太陽的照射下影子長度的增加量和減少量相同).若冬至晷長一丈三尺五寸,夏至晷長一尺五寸(注:ー丈等于十尺,一尺等于十寸),則立冬節(jié)氣的晷長為( )

A. 九尺五寸 B. 一丈五寸 C. 一丈一尺五寸 D. 一丈六尺五寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點在同一個球的球面上,,,.若四面體體積的最大值為,則這個球的表面積為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某中學(xué)舉行的電腦知識競賽中,將九年級兩個班參賽的學(xué)生成績(得分均為整數(shù))進行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知第二小組的頻數(shù)是40.

(1)求第二小組的頻率,并補全這個頻率分布直方圖;

(2)求這兩個班參賽的學(xué)生人數(shù);

(3)求這兩個班參賽學(xué)生的成績的中位數(shù).

查看答案和解析>>

同步練習(xí)冊答案