(本小題滿分14分)

已知:

(1)用定義法證明函數(shù)上的增函數(shù);

(2)是否存在實數(shù)使函數(shù)為奇函數(shù)?若存在,請求出的值,若不存在,說明理由.

 

【答案】

(1)見解析;(2)存在實數(shù),使函數(shù)為R上的奇函數(shù)。

【解析】

試題分析:(1)設(shè)出變量,作差,變形,下結(jié)論,

(2)根據(jù)奇函數(shù)的性質(zhì),在x=0處 函數(shù)值為零,得到參數(shù)的值,進而加以證明。

(1)對任意都有,的定義域是R,  -----------------2分

設(shè),則

       -----------------4分

在R上是增函數(shù),且

下面證明是奇函數(shù)

為R上的奇函數(shù)  存在實數(shù),使函數(shù)為R上的奇函數(shù)。------14分

考點:本題主要是考查函數(shù)單調(diào)性的證明,以及函數(shù)奇偶性的運用。

點評:解決該試題的關(guān)鍵是理解定義法證明函數(shù)單調(diào)性,現(xiàn)設(shè)出變量,和作差變形,然后利用奇函數(shù)的性質(zhì)得到f(0)=0,得到a的值。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設(shè)AB是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案