A∈平面α.AB=5,AC=2
2
,若AB與α所成角正弦值為0.8,AC與α成450角,則BC距離的范圍( 。
分析:作BD⊥α,垂足為D,作CE⊥α,垂足為E,連接AE,AD,DE,過C作CF⊥BD,垂足為F,根據(jù)AB與α所成角正弦值為0.8,AC與α成450角,
求得AE,CE,BD,AD,設(shè)∠DAE=θ,分BC在平面α的同側(cè)和異側(cè)兩種情況列出BC關(guān)于θ的函數(shù)式,根據(jù)0≤θ≤π,求出BC的求值范圍.
解答:解:當(dāng)B、C在平面α的同側(cè)時(shí)如圖作BD⊥α,垂足為D,作CE⊥α,垂足為E,連接AE,AD,DE,
過C作CF⊥BD,垂足為F,
則AD、AE分別為AB、AC在α內(nèi)的射影,∴∠BAD,∠CAE分別為AB、AC與平面α所成的角,
∵AB與α所成角正弦值為0.8,AC與α成450角,
∴AE=CE=2,BD=4,AD=3,
設(shè)∠DAE=θ,BF=4-2
∴BC=
CF2+BF2
=
4+9+4-2×2×3×cosθ
=
17-12cosθ
,
∵0≤θ≤π,∴
5
≤BC≤
29

當(dāng)B、C在平面α的異側(cè)時(shí),BF=4+2=6,
則BC=
CF2+BF2
=
36+9+4-2×2×3×cosθ

∵0≤θ≤π,∴
37
≤BC≤
61

故選D.
精英家教網(wǎng)
點(diǎn)評:本題考查了直線與平面所成的角,考查了學(xué)生的作圖能力與空間想象能力,體現(xiàn)了分類討論思想與數(shù)形結(jié)合思想,正確的作出圖形是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,α和β為平面,α∩β=l,A∈α,B∈β,AB=5,A,B在棱l上的射影分別為A′,B′,AA′=3,BB′=2.若二面角α-l-β的大小為
3
,求:
(Ⅰ)點(diǎn)B到平面α的距離;
(Ⅱ)異面直線l與AB所成的角(用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:重慶市高考真題 題型:解答題

如圖,α和β為平面,α∩β=l,A∈α,B∈β,AB=5,A,B在棱l上的射影分別為A′,B′,AA′=3,BB′=2。若二面角α-l-β的大小為,
求:(Ⅰ)點(diǎn)B到平面α的距離;
(Ⅱ)異面直線l與AB所成的角(用反三角函數(shù)表示)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省銅陵一中高二(上)10月月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,α和β為平面,α∩β=l,A∈α,B∈β,AB=5,A,B在棱l上的射影分別為A′,B′,AA′=3,BB′=2.若二面角α-l-β的大小為,求:
(Ⅰ)點(diǎn)B到平面α的距離;
(Ⅱ)異面直線l與AB所成的角(用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省張家界市高三(上)一輪復(fù)習(xí)數(shù)學(xué)專項(xiàng)訓(xùn)練:直線、平面平行的判定與性質(zhì)(解析版) 題型:解答題

如圖,α和β為平面,α∩β=l,A∈α,B∈β,AB=5,A,B在棱l上的射影分別為A′,B′,AA′=3,BB′=2.若二面角α-l-β的大小為,求:
(Ⅰ)點(diǎn)B到平面α的距離;
(Ⅱ)異面直線l與AB所成的角(用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年重慶市高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,α和β為平面,α∩β=l,A∈α,B∈β,AB=5,A,B在棱l上的射影分別為A′,B′,AA′=3,BB′=2.若二面角α-l-β的大小為,求:
(Ⅰ)點(diǎn)B到平面α的距離;
(Ⅱ)異面直線l與AB所成的角(用反三角函數(shù)表示).

查看答案和解析>>

同步練習(xí)冊答案