已知數(shù)列{an}為等差數(shù)列,且Sm=3,S3m=5,則S4m=
 
考點(diǎn):等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列的性質(zhì)求解.
解答: 解:∵數(shù)列{an}為等差數(shù)列,且Sm=3,S3m=5,
∴Sm,S2m,S3m,S4m成等差數(shù)列,
∵Sm=3,S3m=5,
∴d=
5-3
3-1
=1,
∴S4m=3+3d=6.
故答案為:6.
點(diǎn)評(píng):本題考查等差數(shù)列的前4m項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+1)+mx,當(dāng)x=0時(shí),函數(shù)f(x)取得極大值.
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)已知結(jié)論:若函數(shù)f(x)=ln(x+1)+mx在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,且a>-1,則存在x0∈(a,b),使得f′(x0)=
f(b)-f(a)
b-a
,試用這個(gè)結(jié)論證明:若-1<x1<x2,函數(shù)g(x)=
f(x1)-f(x2)
x1-x2
(x-x1)+f(x1),則對(duì)任意x∈(x1+x2),都有f(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosx,cosx),
b
=(sinx,-cosx),設(shè)函數(shù)f(x)=2
a
b
+1
(Ⅰ)求函數(shù) f(x)最的小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間[
π
8
,
4
]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)y=f(x)過原點(diǎn),f(-1)=-4,且滿足f(x)≤6x+2,數(shù)列{an}滿足a1=
1
3
,an+1=f(an
(1)確定函數(shù)y=f(x)的解析式;
(2)證明:an+1>an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知U=R,A={x|x>0},B={x|x>1},求A∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(2x-x2)ex,給出以下四個(gè)結(jié)論:
①f(x)>0的解集是{x|0<x<2};
②f(-
2
)是極小值,f(
2
)是極大值;
③f(x)沒有最小值,也沒有最大值;
④f(x)有最大值,沒有最小值.
其中判斷正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,已知a2+a7=9,則3a4+a6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若[a]表示不超過實(shí)數(shù)a的最大整數(shù),則方程[tanx]=2sin2x的解是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+2cosx在區(qū)間[0,
π
2
]上取最小值時(shí),x的值為(  )
A、0
B、
π
6
C、
π
3
D、
π
2

查看答案和解析>>

同步練習(xí)冊(cè)答案