【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月2日 | 12月3日 | 12月4日 |
溫差() | 11 | 13 | 12 |
發(fā)芽數(shù)(顆) | 25 | 30 | 26 |
(1)請根據(jù)12月2日至12月4日的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)該農(nóng)科所確定的研究方案是:先用上面的3組數(shù)據(jù)求線性回歸方程,再選取2組數(shù)據(jù)進行檢驗.若12月5日溫差為,發(fā)芽數(shù)16顆,12月6日溫差為,發(fā)芽數(shù)23顆.由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
注:,.
科目:高中數(shù)學 來源: 題型:
【題目】如圖是由容量為100的樣本得到的頻率分布直方圖.其中前4組的頻率成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為a,在到之間的數(shù)據(jù)個數(shù)為b,則a,b的值分別為( )
A.,78
B.,83
C.,78
D.,83
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中,假命題的是( )
A.一條直線與兩個平行平面中的一個相交,則必與另一個平面相交.
B.平行于同一平面的兩條直線一定平行.
C.如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面.
D.若直線不平行于平面,且不在平面內(nèi),則在平面內(nèi)不存在與平行的直線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,三國時代數(shù)學家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機拋擲500顆米粒(大小忽略不計,取),則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為( )
A. 134 B. 67 C. 200 D. 250
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓過, ,且圓心在直線上.
(Ⅰ)求此圓的方程.
(Ⅱ)求與直線垂直且與圓相切的直線方程.
(Ⅲ)若點為圓上任意點,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓與軸交于、兩點(點在點的左側(cè)),、是分別過、點的圓的切線,過此圓上的另一個點(點是圓上任一不與、重合的動點)作此圓的切線,分別交、于、兩點,且、兩直線交于點.
()設(shè)切點坐標為,求證:切線的方程為.
()設(shè)點坐標為,試寫出與的關(guān)系表達式(寫出詳細推理與計算過程).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點,定直線,動圓經(jīng)過點且與直線相切.
(I)求動圓圓心的軌跡方程;
(II)設(shè)點為曲線上不同的兩點,且,過兩點分別作曲線的兩條切線,且二者相交于點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點P(2,2),圓,過點P的動直線l與圓C交于A,B兩點,線段AB的中點為M,O為坐標原點.
(1)求點M的軌跡方程;
(2)當|OP|=|OM|時,求l的方程及△POM的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com