A. | (1,+∞)∪(-∞,0) | B. | (0,1) | C. | $({1,\sqrt{2}}]$ | D. | $({1,\sqrt{2}}]∪[{-\sqrt{2},0})$ |
分析 利用函數(shù)的定義域和單調(diào)性,可得 $\left\{\begin{array}{l}{-1≤x-1≤1}\\{-1{≤x}^{2}-1≤1}\\{x-1{<x}^{2}-1}\end{array}\right.$,由此求得x的范圍.
解答 解:∵函數(shù)f(x)是定義在[-1,1]上的增函數(shù),若f(x-1)<f(x2-1),
∴$\left\{\begin{array}{l}{-1≤x-1≤1}\\{-1{≤x}^{2}-1≤1}\\{x-1{<x}^{2}-1}\end{array}\right.$,求得1<x≤$\sqrt{2}$,
故選:C.
點評 本題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 300元 | B. | 400元 | C. | 500元 | D. | 600元 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (x-2)2+(y-3)2=4 | B. | (x+2)2+(y-3)2=4 | C. | (x+2)2+(y+3)2=4 | D. | (x-2)2+(y+3)2=4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | 6 | D. | 10 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com