【題目】已知函數(shù) .

(1)討論的單調(diào)性;

(2)若,求的取值范圍.

【答案】(1)上遞增,在上遞減;(2).

【解析】試題分析:(1)1)當(dāng)時(shí),,在上單調(diào)遞減; 2)當(dāng)時(shí),.①當(dāng)時(shí),單調(diào)遞減;②當(dāng)時(shí),上大于0,上單調(diào)遞增,上小于0,上單調(diào)遞減;

(2)①當(dāng)時(shí),,滿足題意;②當(dāng)時(shí),,不滿足題意;③當(dāng)時(shí),,不滿足題意;④當(dāng)時(shí),由(1)可知 ,則將上式寫為,令,解得 當(dāng)時(shí),,,滿足題意;當(dāng)時(shí),,不滿足題意;綜上可得,當(dāng)時(shí),.

試題解析:(1)1)當(dāng)時(shí),,在上單調(diào)遞減;

2)當(dāng)時(shí),.

①當(dāng)時(shí),在定義域上,,,單調(diào)遞減;

②當(dāng)時(shí),的解為,(負(fù)值舍去),

上大于0,上單調(diào)遞增,

上小于0,上單調(diào)遞減;

綜上所述,當(dāng)時(shí),單調(diào)遞減;

當(dāng)時(shí),上單調(diào)遞增,在上單調(diào)遞減;

(2)①當(dāng)時(shí),,滿足題意;

②當(dāng)時(shí), ,不滿足題意;

③當(dāng)時(shí),,

由于,

所以為兩負(fù)數(shù)的乘積大于0,即,不滿足題意;

④當(dāng)時(shí),由(1)可知

,則將上式寫為,令,解得,此時(shí),

而當(dāng)時(shí),,,滿足題意;

當(dāng)時(shí),,不滿足題意;

綜上可得,當(dāng)時(shí),.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雖然吸煙有害健康,但是由于歷史以及社會(huì)的原因,吸煙也是部分公民交際的重要媒介.世界衛(wèi)生組織1987年11月建議把每年的4月7日定為世界無煙日,且從1989年開始,世界無煙日改為每年的5月31日.某報(bào)社記者專門對吸煙的市民做了戒煙方面的調(diào)查,經(jīng)抽樣只有的煙民表示愿意戒煙,將頻率視為概率.

(1)從該市吸煙的市民中隨機(jī)抽取3位,求至少有一位煙民愿意戒煙的概率;

(2)從該市吸煙的市民中隨機(jī)抽取4位, 表示愿意戒煙的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:函數(shù)f(x)= (a>0,且a≠1)在R上為單調(diào)遞減函數(shù),命題q:x∈[0, ],x2﹣a≤0恒成立.
(1)求命題q真時(shí)a的取值范圍;
(2)若命題p∧q為假,p∨q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知向量 =( ,﹣ ), =(sinx,cosx),x∈(0, ).
(1)若 ,求tanx的值;
(2)若 的夾角為 ,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,四邊形是菱形, ,又平面,

點(diǎn)是棱的中點(diǎn), 在棱上,且.

(1)證明:平面平面;

(2)若平面,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)對任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sinx(sinx+ cosx)﹣1(其中x∈R),求:
(1)函數(shù)f(x)的最小正周期;
(2)函數(shù)f(x)的單調(diào)減區(qū)間;
(3)函數(shù)f(x)圖象的對稱軸和對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線y2=4x的焦點(diǎn)為F,過點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),過AB的中點(diǎn)M作準(zhǔn)線的垂線與拋物線交于點(diǎn)P,若 ,則弦長|AB|等于(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差不為零的等差數(shù)列{an}中,a1=1,且a1 , a3 , a9成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= +n,求數(shù)列Sn的前Sn項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案