【題目】若函數(shù)在區(qū)間上存在零點(diǎn),則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
【答案】D
【解析】
利用導(dǎo)數(shù)研究函數(shù)在上的單調(diào)性,當(dāng)時(shí),在上為增函數(shù),
且,即可判斷其沒(méi)有零點(diǎn),不符合條件;當(dāng)時(shí),在上先減后增,有最小值且小于零,再結(jié)合冪函數(shù)和對(duì)數(shù)函數(shù)的增長(zhǎng)速度大小關(guān)系,即可判斷當(dāng)趨于時(shí),趨于,由零點(diǎn)存在性定理即可判斷其必有零點(diǎn),符合題意,從而確定的范圍.
因?yàn)楹瘮?shù),
所以
令,因?yàn)?/span>,
當(dāng) 時(shí),,所以
所以在上為增函數(shù),則,
當(dāng)時(shí),,所以,所以在上為增函數(shù),
則,所以在上沒(méi)有零點(diǎn).
當(dāng)時(shí),即,因?yàn)?/span>在上為增函數(shù),則存在唯一的,使得,且當(dāng)時(shí),,當(dāng)時(shí),;
所以當(dāng)時(shí),,為減函數(shù),當(dāng)時(shí),,為增函數(shù),當(dāng)時(shí),,
因?yàn)?/span>,當(dāng)趨于時(shí),趨于,
所以在內(nèi),一定存在一個(gè)零點(diǎn).
所以,
故答案選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在水平地面上的不同兩點(diǎn)處栽有兩根筆直的電線桿,假設(shè)它們都垂直于地面,則在水平地面上視它們上端仰角相等的點(diǎn)的軌跡可能是( )
①直線 ②圓 ③橢圓 ④拋物線
A.①②B.①③C.①②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),以軸為非負(fù)半軸為極軸建立極坐標(biāo)系,兩坐標(biāo)系相同的長(zhǎng)度單位.圓的方程為被圓截得的弦長(zhǎng)為.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等邊三角形的邊長(zhǎng)為,為邊的中點(diǎn),沿將折成直二面角,則三棱錐的外接球的表面積為_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)站舉行“衛(wèi)生防疫”的知識(shí)競(jìng)賽網(wǎng)上答題,共有120000人通過(guò)該網(wǎng)站參加了這次競(jìng)賽,為了解競(jìng)賽成績(jī)情況,從中抽取了100人的成績(jī)進(jìn)行統(tǒng)計(jì),其中成績(jī)分組區(qū)間為,,,,,其頻率分布直方圖如圖所示,請(qǐng)你解答下列問(wèn)題:
(1)求的值;
(2)成績(jī)不低于90分的人就能獲得積分獎(jiǎng)勵(lì),求所有參賽者中獲得獎(jiǎng)勵(lì)的人數(shù);
(3)根據(jù)頻率分布直方圖,估計(jì)這次知識(shí)競(jìng)賽成績(jī)的平均分(用組中值代替各組數(shù)據(jù)的平均值).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段是過(guò)拋物線的焦點(diǎn)F的一條弦,過(guò)點(diǎn)A(A在第一象限內(nèi))作直線垂直于拋物線的準(zhǔn)線,垂足為C,直線與拋物線相切于點(diǎn)A,交x軸于點(diǎn)T,給出下列命題:
(1);
(2);
(3).
其中正確的命題個(gè)數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在相同條件下各射擊次,每次中靶環(huán)數(shù)情況如圖所示:
(1)請(qǐng)?zhí)顚?xiě)下表(先寫(xiě)出計(jì)算過(guò)程再填表):
平均數(shù) | 方差 | 命中環(huán)及環(huán)以上的次數(shù) | |
甲 | |||
乙 |
(2)從下列三個(gè)不同的角度對(duì)這次測(cè)試結(jié)果進(jìn)行
①?gòu)钠骄鶖?shù)和方差相結(jié)合看(分析誰(shuí)的成績(jī)更穩(wěn)定);
②從平均數(shù)和命中環(huán)及環(huán)以上的次數(shù)相結(jié)合看(分析誰(shuí)的成績(jī)好些);
③從折線圖上兩人射擊命中環(huán)數(shù)的走勢(shì)看(分析誰(shuí)更有潛力).
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列五個(gè)命題:
①已知直線、和平面,若,,則;
②平面上到一個(gè)定點(diǎn)和一條定直線的距離相等的點(diǎn)的軌跡是一條拋物線;
③雙曲線,則直線與雙曲線有且只有一個(gè)公共點(diǎn);
④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直;
⑤過(guò)的直線與橢圓交于、兩點(diǎn),線段中點(diǎn)為,設(shè)直線斜率為,直線的斜率為,則等于.
其中,正確命題的序號(hào)為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(a∈R且a≠0).
(1)當(dāng)a時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性與單調(diào)區(qū)間;
(3)若y=f(x)有兩個(gè)極值點(diǎn)x1,x2,證明:f(x1)+f(x2)<9﹣lna.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com