【題目】設(shè)f(x)是定義域為R,最小正周期為3π的函數(shù),且在區(qū)間(﹣π,2π]上的表達式為f(x)= ,則f(﹣ )+f( )=(
A.
B.﹣
C.1
D.﹣1

【答案】D
【解析】解:∵f(x)是定義域為R且最小正周期為3π的函數(shù),
∴f(﹣ )=f(﹣343π﹣ π)=f(﹣ π),f( )=f(333π+π+ )=f(π+ ),
∵f(x)= ,
∴f(﹣ )+f( )=cos(﹣ )+sin(π+ )=﹣cos ﹣sin =﹣1,
故選:D.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的值的相關(guān)知識,掌握函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,圓C的參數(shù)方程為(θ是參數(shù)),直線l的極坐標(biāo)方程為(ρ∈R)
(Ⅰ)求C的普通方程與極坐標(biāo)方程;
(Ⅱ)設(shè)直線l與圓C相交于A,B兩點,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P ABCD中,底面ABCD為平行四邊形, ,PA⊥平面ABCD,EPD的中點.

證明:PB平面AEC;

設(shè)AD2, ,求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五面體ABCDEF中,F(xiàn)A⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M為EC的中點,AF=AB=BC=FE= AD,

(1)求異面直線BF與DE所成的角的大;
(2)證明平面AMD⊥平面CDE;
(3)求二面角A﹣CD﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy2=2px(p>0)的焦點為F,若過點F且斜率為1的直線與拋物線相交于M,N兩點,且|MN|=8.

(Ⅰ)求拋物線C的方程;

(Ⅱ)設(shè)直線l為拋物線C的切線,且lMN,Pl上一點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工科院校對, 兩個專業(yè)的男女生人數(shù)進行調(diào)查,得到如下的列聯(lián)表:

專業(yè)

專業(yè)

總計

女生

12

4

16

男生

38

46

84

總計

50

50

100

(Ⅰ)從專業(yè)的女生中隨機抽取2名女生參加某項活動,其中女生甲被選到的概率是多少?

(Ⅱ)能否有95%的把握認(rèn)為工科院校中“性別”與“專業(yè)”有關(guān)系?

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校研究性學(xué)習(xí)小組從汽車市場上隨機抽取20輛純電動汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計結(jié)果分成5組: ,繪制成如圖所示的頻率分布直方圖.

1)求直方圖中的值;

2)求續(xù)駛里程在的車輛數(shù);

3)若從續(xù)駛里程在的車輛中隨機抽取2輛車,求其中恰有一輛車的續(xù)駛里程為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+a2(a>0)在x=1處有極值10.
(1)求a、b的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)求f(x)在[0,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線與拋物線相交于不同兩點、,與圓相切于點,且為線段中點

(1)是正三角形(是坐標(biāo)原點),求此三角形的邊長;

(2) 若,求直線的方程;

(3)進行討論,請你寫出符合條件的直線數(shù)(直接寫出結(jié)論).

查看答案和解析>>

同步練習(xí)冊答案