【題目】紋樣是中國藝術(shù)寶庫的瑰寶,火紋是常見的一種傳統(tǒng)紋樣,為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機投擲2000個點,己知恰有800個點落在陰影部分,據(jù)此可估計陰影部分的面積是

A.B.C.D.

【答案】B

【解析】

邊長為3的正方形的面積S正方形9,設(shè)陰影部分的面積為S,由幾何概型得,由此能估計陰影部分的面積.

解:為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內(nèi),

則邊長為3的正方形的面積S正方形9,

設(shè)陰影部分的面積為S

∵該正方形內(nèi)隨機投擲2000個點,已知恰有800個點落在陰影部分,

,

解得S,

∴估計陰影部分的面積是

故選:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】對于集合,定義函數(shù)對于兩個集合,定義集合. 已知, .

(Ⅰ)寫出的值,并用列舉法寫出集合;

(Ⅱ)用表示有限集合所含元素的個數(shù),求的最小值;

(Ⅲ)有多少個集合對,滿足,且?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式|x+1||2x|+1的解集為M,且ab,cM

1)比較|ab||1ab|的大小,并說明理由;

2)若,求a2+b2+c2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在等腰中,,分別為,的中點,的中點,在線段上,且。將沿折起,使點的位置(如圖2所示),且。

(1)證明:平面;

(2)求平面與平面所成銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖的折線圖是某超市2018年一月份至五月份的營業(yè)額與成本數(shù)據(jù),根據(jù)該折線圖,下列說法正確的是( )

A.該超市2018年的前五個月中三月份的利潤最高

B.該超市2018年的前五個月的利潤一直呈增長趨勢

C.該超市2018年的前五個月的利潤的中位數(shù)為0.8萬元

D.該超市2018年前五個月的總利潤為3.5萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的右頂點為A,以A為圓心,b為半徑做圓,圓A與雙曲線C的一條漸近線相交于M,N兩點,若為坐標原點),則雙曲線C的離心率為___________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分形幾何學是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學.分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個數(shù)學意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為,在線段上取兩個點,,使得,以為一邊在線段的上方做一個正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:

記第個圖形(圖1為第1個圖形)中的所有線段長的和為,則(1______;(2)如果對,恒成立,那么線段的長度的取值范圍是_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某網(wǎng)店經(jīng)營的一種商品進行進價是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量(件)與單價(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開支均為25元.

(1)根據(jù)周銷售量圖寫出(件)與單價(元)之間的函數(shù)關(guān)系式;

(2)寫出利潤(元)與單價(元)之間的函數(shù)關(guān)系式;當該商品的銷售價格為多少元時,周利潤最大?并求出最大周利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)當時,求處的切線方程;

2)討論的單調(diào)性;

3)若有兩個零點,求的取值范圍.

查看答案和解析>>

同步練習冊答案