【題目】下面四個(gè)關(guān)于圓錐曲線的命題中,其中真命題為( )
A.設(shè)A、B為兩個(gè)定點(diǎn),K為非零常數(shù),若,則動(dòng)點(diǎn)P的軌跡是雙曲線
B.方程的兩根可分別作為橢圓和雙曲線的離心率
C.雙曲線與橢圓有相同的焦點(diǎn)
D.已知拋物線,以過焦點(diǎn)的一條弦AB為直徑作圓,則此圓與準(zhǔn)線相切
【答案】BD
【解析】
對(duì)A,根據(jù)雙曲線的定義可知錯(cuò)誤;對(duì)B,求出方程的兩根,即可判斷;對(duì)C,利用的關(guān)系判斷;對(duì)D,利用拋物線的焦半徑求解.
,
對(duì)A,當(dāng)且,點(diǎn)的軌跡是雙曲線,故A錯(cuò)誤;
對(duì)B,方程分別為和,故兩根可分別作為橢圓和雙曲線的離心率,故B正確;
對(duì)C,雙曲線中,橢圓中,所以焦點(diǎn)坐標(biāo)不一樣,故C錯(cuò)誤;
對(duì)D,設(shè)弦AB的中點(diǎn)為,過分別作拋物線準(zhǔn)線的垂線,垂足為,則,以過焦點(diǎn)的一條弦AB為直徑作圓,則此圓與準(zhǔn)線相切,故D正確;
故選:BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題,則假命題的個(gè)數(shù)是( )
①若,則“”的充要條件是“”;
②給定兩個(gè)命題,,是的必要不充分條件,則是的充分不必要條件;
③設(shè),若,則或;
④命題“若,則方程有實(shí)數(shù)根”的否命題.( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中藥種植基地有兩處種植區(qū)的藥材需在下周一、下周二兩天內(nèi)采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘.由于下雨會(huì)影響藥材品質(zhì),基地收益如下表所示:
周一 | 無雨 | 無雨 | 有雨 | 有雨 |
周二 | 無雨 | 有雨 | 無雨 | 有雨 |
收益 | 萬元 | 萬元 | 萬元 | 萬元 |
若基地額外聘請(qǐng)工人,可在周一當(dāng)天完成全部采摘任務(wù).無雨時(shí)收益為萬元;有雨時(shí),收益為萬元.額外聘請(qǐng)工人的成本為萬元.
已知下周一和下周二有雨的概率相同,兩天是否下雨互不影響,基地收益為萬元的概率為.
(Ⅰ)若不額外聘請(qǐng)工人,寫出基地收益的分布列及基地的預(yù)期收益;
(Ⅱ)該基地是否應(yīng)該外聘工人,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),已知對(duì)任意,都有,且成立.令,其中為常數(shù).
(1)當(dāng)時(shí),求函數(shù)的所有零點(diǎn);
(2)當(dāng)時(shí),求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,試討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),當(dāng)對(duì)任意的恒成立時(shí),求函數(shù)的最大值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在上的函數(shù)滿足如下條件:①函數(shù)的圖象關(guān)于軸對(duì)稱;②對(duì)于任意,;③當(dāng)時(shí),;④函數(shù),,若過點(diǎn)的直線與函數(shù)的圖象在上恰有8個(gè)交點(diǎn),則直線斜率的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出如下四個(gè)命題:
①“”是“”的充分而不必要條件;
②命題“若,則函數(shù)有一個(gè)零點(diǎn)”的逆命題為真命題;
③若是的必要條件,則是的充分條件;
④在中,“”是“”的既不充分也不必要條件.
其中正確的命題的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(CUA)∩B;
(2)若A∩C≠,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com