精英家教網 > 高中數學 > 題目詳情
設函數f(x)=
(2x+1)(3x+a)
x
為奇函數,則a=
-
3
2
-
3
2
分析:利用函數是奇函數建立方程關系,然后解方程即可.
解答:解:函數的定義域為{x|x≠0},關于原點對稱.
又f(x)=
6x2+(3+2a)x+a
x
=6x+3+2a+
a
x
,
所以由f(-x)=-f(x)得-6x+3+2a-
a
x
=-6x-3-2a-
a
x

即2a=-3,所以a=-
3
2

故答案為:-
3
2
點評:本題主要考查函數奇偶性的應用,利用奇偶性的定義建立方程關系是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數y=f(x)在(-∞,+∞)內有定義,對于給定的正數k,定義函數fk(x)=
f(x),f(x)≤k
k,f(x)>k
.設函數f(x)=2+x-ex,若對任意的x∈(-∞,+∞)恒有fk(x)=f(x),則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinx,
3
4
),
b
=(cosx,-1).
(1)當
a
b
時,求cos2x-sin2x的值;
(2)設函數f(x)=2(
a
+
b
)•
b
,求f(x)的值域.(其中x∈(0,
24
))

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=2|x+1-|x-1|,則滿足f(x)≥2
2
的x取值范圍為
[
3
4
,+∞)
[
3
4
,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
2-x -1  x≤0
x
1
2
x>0
,則f[f(-1)]=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
2,x<1
x-1
,x≥1
 則f(f(f(1)))=
1
1

查看答案和解析>>

同步練習冊答案