(本小題滿(mǎn)分14分)

  已知函數(shù),)的圖象在處的切線(xiàn)與軸平行.

(I) 試確定、的符號(hào);

(II) 若函數(shù)在區(qū)間上有最大值為,試求的值.

 

【答案】

(1) (2)

【解析】(I)由圖象在處的切線(xiàn)與軸平行,

,∴①                                   …………3分

,故.                                 …………  4分

(II)令,

                                   ……………………  6分

易證的極大值點(diǎn),是極小值點(diǎn)(如圖).     …………  7分

,得. …………………………………………8分

分類(lèi):

(1) 當(dāng)時(shí),,∴ .     ②

由①,②解得,符合前提 .                ………… 10分

(2) 當(dāng)時(shí),,

.      ③

由①,③得   . ………………………………  12分

,

,

上是增函數(shù),又,∴,[來(lái)源:Zxxk.Com][來(lái)源:Z*xx*k.Com]

上無(wú)實(shí)數(shù)根.[來(lái)源:學(xué)*科*網(wǎng)Z*X*X*K]

綜上,的值為.  ………………………………   14分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣東模擬)(本小題滿(mǎn)分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分14分)設(shè)橢圓C1的方程為(ab>0),曲線(xiàn)C2的方程為y=,且曲線(xiàn)C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)AB是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿(mǎn)分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿(mǎn)分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷(xiāo)售價(jià)格及銷(xiāo)售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷(xiāo)售價(jià)格(單位:元)為,第天的銷(xiāo)售量為,已知該商品成本為每件25元.

(Ⅰ)寫(xiě)出銷(xiāo)售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤(rùn);

(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分14分)已知的圖像在點(diǎn)處的切線(xiàn)與直線(xiàn)平行.

⑴ 求,滿(mǎn)足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案