精英家教網 > 高中數學 > 題目詳情
18.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,且PA=AD=3,$CD=\sqrt{6}$,E、F分別是AB、PD的中點,則點F到平面PCE的距離為( 。
A.$\frac{{3\sqrt{2}}}{4}$B.$\sqrt{2}$C.$\frac{{3\sqrt{3}}}{4}$D.$\frac{{\sqrt{3}}}{2}$

分析 以A為原點,AB為x軸,AD為y軸,AP為z軸,建立如圖所示的空間直角坐標系,利用向量法能求出點F到平面PCE的距離.

解答 解:以A為原點,AB為x軸,AD為y軸,AP為z軸,建立如圖所示的空間直角坐標系,
則E($\frac{\sqrt{6}}{2}$,0,0),P(0,0,3),D(0,3,0),
$\overrightarrow{EP}$=(-$\frac{\sqrt{6}}{2}$,0,3),$\overrightarrow{EC}$=($\frac{\sqrt{6}}{2}$,3,0).
設平面PCE的法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EP}=0}\\{\overrightarrow{n}•\overrightarrow{EC}=0}\end{array}\right.$,即$\left\{\begin{array}{l}-\frac{{\sqrt{6}}}{2}x+3z=0\\ \frac{{\sqrt{6}}}{2}x+3y=0.\end{array}\right.$,取y=-1,得$\overrightarrow{n}$=($\sqrt{6},-1,1$).
又$\overrightarrow{PF}$=(0,$\frac{3}{2}$,-$\frac{3}{2}$),
∴點F到平面PCE的距離為:d=$\frac{|\overrightarrow{PF}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{3}{2\sqrt{2}}$=$\frac{3\sqrt{2}}{4}$.
故選:A.

點評 本題考查點到平面的距離的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

8.請閱讀下面語句,寫出該算法輸出的結果是110.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.已知$\overrightarrow a=({1,0,2})$,$\overrightarrow b=({-1,1,0})$,$\overrightarrow c=({-1,y,2})$,若$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$三向量共面,則實數y的值為( 。
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.《張丘建算經》是我國南北朝時期的一部重要數學著作,書中系統(tǒng)的介紹了等差數列,同類結果在三百多年后的印度才首次出現(xiàn).書中有這樣一個問題,大意為:某女子善于織布,后一天比前一天織的快,而且每天增加的數量相同,已知第一天織布5尺,一個月(按30天計算)總共織布585尺,問每天增加的數量為多少尺?該問題的答案為(  )
A.$\frac{1}{2}$尺B.$\frac{2}{3}$尺C.1尺D.$\frac{3}{2}$尺

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.函數f(x)=1+lgx+$\frac{9}{lgx}$(0<x<1)的最大值是-5.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.若$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-1,3),則$\overrightarrow a•\overrightarrow b$=(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.如圖,△ABC中,$\frac{CD}{DA}=\frac{AE}{EB}=\frac{1}{2}$,記$\overrightarrow{BC}=\overrightarrow{a,}\overrightarrow{CA}=\overrightarrow b$,則$\overrightarrow{DE}$=$\frac{1}{3}(\overrightarrow b-\overrightarrow a)$.(用$\overrightarrow a$和$\overrightarrow b$表示)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.已知雙曲線C1:$\frac{x^2}{16}-\frac{y^2}{4}$=1,雙曲線C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,M 是雙曲線C2 一條漸近線上的點,且OM⊥MF2,若△OMF2的面積為 16,且雙曲線C1,C2的離心率相同,則雙曲線C2的實軸長為( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.若橢圓的兩個焦點和短軸的一個頂點構成正三角形,則此橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}}{4}$

查看答案和解析>>

同步練習冊答案