13.已知參數(shù)方程$\left\{\begin{array}{l}{x=at+lcosq}\\{y=bt+lsinq}\end{array}\right.$(a、b、l均不為零,0≤q≤2p),若分別取①t為參數(shù),②l為參數(shù),③q為參數(shù),則下列結(jié)論中成立的是( 。
A.①、②、③均直線B.只有②是直線C.①、②是直線,③是圓D.②是直線,①、③是圓

分析 將參數(shù)方程分別在條件①t為參數(shù),②l為參數(shù),③q為參數(shù),得到普通方程,根據(jù)普通方程判定方程所表示的曲線即可.

解答 解:參數(shù)方程$\left\{\begin{array}{l}{x=at+lcosq}\\{y=bt+lsinq}\end{array}\right.$(a、b、l均不為零,0≤q≤2π,
①t是參數(shù),消去t得bx-ay+aλsinq-bλcosq=0,方程所表示的曲線為直線;
②l是參數(shù),消去l得sinqx-cosqy+btcosq-atsinq=0,方程所表示的曲線為直線;
③q是參數(shù),消去q得(x-at)2+(y-bt)2=l2,方程所表示的曲線為圓.
故選C.

點(diǎn)評(píng) 本題主要考查了參數(shù)方程化成普通方程,同時(shí)考查了消元、計(jì)算的能力和轉(zhuǎn)化的思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.六棱錐P-ABCDEF中,底面是正六邊形,頂點(diǎn)在底面的射影是底面正多邊形中心,G為PB的中點(diǎn),則三棱錐D-GAC與三棱錐P-GAC體積之比為(  )
A.1:1B.1:2C.2:1D.3:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知兩條直線l1:3x+4y-2=0與l2:2x+y+2=0的交點(diǎn)P,求:
(1)過點(diǎn)P且過原點(diǎn)的直線l的方程;
(2)若直線m與l平行,且點(diǎn)P到直線m的距離為3,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如果直線2x-y+m=0與圓x2+(y-2)2=5相切,那么m的值為-3或7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}x=t-2\\ y=2-2t\end{array}\right.(t$為參數(shù)),曲線C的極坐標(biāo)方程為$ρ=2\sqrt{2}sin(θ+\frac{π}{4})$,直線l與曲線C交于A、B零點(diǎn),與y軸交于點(diǎn)P.
(1)求曲線C的參數(shù)方程;
(2)過曲線C上任意一點(diǎn)P作與直線l夾角為30°的直線,角l于點(diǎn)A,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知m,n為不同的直線,α,β為不同的平面,則下列說法正確的是( 。
A.m?α,n∥m⇒n∥αB.m?α,n⊥m⇒n⊥αC.m⊥α,m∥n,n∥β⇒α⊥βD.m?α,n?β,m∥n⇒α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知tanα=3,則$\frac{2sinα-cosα}{sinα+3cosα}$等于( 。
A.$\frac{1}{3}$B.$\frac{5}{6}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=\frac{x+a}{e^x}$(e為自然對(duì)數(shù))在(0,f(0))處的切線方程為y=b.
(1)求a,b的值;
(2)設(shè)函數(shù)$g(x)=xf(x)+m{f^'}(x)+\frac{1}{e^x}$(m>0),存在實(shí)數(shù)x1,x2∈[0,1],使得2g(x1)<g(x2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.由甲、乙、丙3人組成的工作小組共獲得了4萬元獎(jiǎng)金,現(xiàn)在他們決定用如下方法分配獎(jiǎng)金:甲乙二人格子隨機(jī)從獎(jiǎng)金中取出1萬元或2萬元作為自己的獎(jiǎng)金,他們?nèi)〉?萬元的概率均為P1,取得2萬元的概率均為P2,剩下的獎(jiǎng)金全部歸丙.
(1)若P1=P2=$\frac{1}{2}$,求丙獲得1萬元獎(jiǎng)金的概率;
(2)若甲、乙、丙獲得獎(jiǎng)金的期望值相等,求P1,P2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案