【題目】如圖,點(diǎn)F是拋物線τ:x2=2py (p>0)的焦點(diǎn),點(diǎn)A是拋物線上的定點(diǎn),且 =(2,0),點(diǎn)B,C是拋物線上的動點(diǎn),直線AB,AC斜率分別為k1 , k2 .
(I)求拋物線τ的方程;
(Ⅱ)若k1﹣k2=2,點(diǎn)D是點(diǎn)B,C處切線的交點(diǎn),記△BCD的面積為S,證明S為定值.
【答案】解:(Ⅰ)設(shè)A(x0,y0),可知F(0, ),故 .
∴ ,代入x2=2py,得p=2.
∴拋物線τ的方程為x2=4y.
(Ⅱ)過D作y軸的平行線交BC于點(diǎn)E,并設(shè)B( ),C( ),
由(Ⅰ)得A(﹣2,1).
=2,
∴x2﹣x1=8.
直線DBy= ,直線CDy= ,解得 .
∴直線BC的方程為y﹣ = ,將xD代入得 .
∴△BCD的面積為S= ×ED×(x2﹣x1)= = (定值)
【解析】(1)設(shè)A(x0,y0),由拋物線方程可得焦點(diǎn)坐標(biāo)F(0, ),根據(jù) =(2,0)即拋物線方程列出方程組,解出p,得到方程;(2)過D作y軸的平行線交BC于點(diǎn)E,設(shè)出B,C坐標(biāo),根據(jù)斜率之差為2,得出x2﹣x1=8,直線方程聯(lián)立拋物線方程,得出xD,yD , y E,再算出△BCD的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,已知平面PBC⊥平面ABC.
(1)若AB⊥BC,CP⊥PB,求證:CP⊥PA:
(2)若過點(diǎn)A作直線l⊥平面ABC,求證:l∥平面PBC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)(2,3)在橢圓 上,設(shè)A,B,C分別為橢圓的左頂點(diǎn)、上頂點(diǎn)、下頂點(diǎn),且點(diǎn)C到直線AB的距離為 .
(I)求橢圓C的方程;
(II)設(shè)M(x1 , y1),N(x2 , y2)(x1≠x2)為橢圓上的兩點(diǎn),且滿足 = ,求證:△MON的面積為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知D是直角ABC斜邊BC上一點(diǎn),AC= DC,
(Ⅰ)若∠DAC=30°求角B的大;
(Ⅱ)若BD=2DC,且 AD=2 ,求DC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0),過點(diǎn)C(﹣4,0)作拋物線的兩條切線CA,CB,A,B為切點(diǎn),若直線AB經(jīng)過拋物線y2=2px的焦點(diǎn),△CAB的面積為24,則以直線AB為準(zhǔn)線的拋物線標(biāo)準(zhǔn)方程是( 。
A.y2=4x
B.y2=﹣4x
C.y2=8x
D.y2=﹣8x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個袋中有大小相同,編號分別為1,2,3,4,5的五個球,從中有放回地每次取一個球,共取3次,取得三個球的編號之和不小于13的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,已知點(diǎn)P(1,﹣2),直線l: (m 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以 x軸的正半軸為極軸建立極坐標(biāo)系;曲線C的極坐標(biāo)方程為ρsin2θ=3cosθ;直線l與曲線C的交點(diǎn)為A,B.
(1)求直線l和曲線C的普通方程;
(2)求 + 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Acos2(ωx+φ)+1(A>0,ω>0,0<φ< )的最大值為3,f(x)的圖象與y軸的交點(diǎn)坐標(biāo)為(0,2),其相鄰兩條對稱軸間的距離為2,則f(1)+f(2)+f(3)+…+f(2016)的值為( )
A.2468
B.3501
C.4032
D.5739
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四面體A﹣BCD中,AB=CD=10,AC=BD=2 ,AD=BC=2 ,則四面體A﹣BCD外接球的表面積為( 。
A.50π
B.100π
C.200π
D.300π
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com