已知橢圓的左、右焦點(diǎn)分別為,離心率為,P是橢圓上一點(diǎn),且面積的最大值等于2

(1)求橢圓的方程;

(2)直線(xiàn)y=2上是否存在點(diǎn)Q,使得從該點(diǎn)向橢圓所引的兩條切線(xiàn)相互垂直?若存在,求點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由。

 

【答案】

(1) ;(2)存在,.

【解析】

試題分析:(1)通過(guò)橢圓性質(zhì)列出的方程,其中離心率,分析圖形知道當(dāng)點(diǎn)P在短軸端點(diǎn)時(shí),面積取得最大值,所以,橢圓中,從而建立關(guān)于的方程,解出;即得到橢圓的標(biāo)準(zhǔn)方程;(2)對(duì)于存在性的問(wèn)題,要先假設(shè)存在,先設(shè)存在這樣的點(diǎn),,結(jié)合圖形知道要先討論,當(dāng)時(shí),明顯切線(xiàn)不垂直,當(dāng)時(shí),先設(shè)切線(xiàn),與橢圓方程聯(lián)立,利用,得出關(guān)于斜率的方程,利用兩根之積公式,解出點(diǎn)坐標(biāo)..此題為較難題型,分類(lèi)討論時(shí)要全面.

試題解析:(1)因?yàn)辄c(diǎn)在橢圓上,所以

因此當(dāng)時(shí),面積最大,且最大值為

又離心率為

由于,解得

所求橢圓方程為

(2)假設(shè)直線(xiàn)上存在點(diǎn)滿(mǎn)足題意,設(shè),顯然當(dāng)時(shí),從點(diǎn)所引的兩條切線(xiàn)不垂直.

當(dāng)時(shí),設(shè)過(guò)點(diǎn)向橢圓所引的切線(xiàn)的斜率為,則的方程為

消去,整理得:

所以, *

設(shè)兩條切線(xiàn)的斜率分別為,顯然,是方程的兩根,故:

解得:,點(diǎn)坐標(biāo)為

因此,直線(xiàn)上存在兩點(diǎn)滿(mǎn)足題意.

考點(diǎn):1.橢圓的性質(zhì)與標(biāo)準(zhǔn)方程;2.直線(xiàn)垂直的判斷;3.存在性問(wèn)題的求解.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的離心率為
1
2
且經(jīng)過(guò)點(diǎn)P(1,
3
2
)
.M為橢圓上的動(dòng)點(diǎn),以M為圓心,MF2為半徑作圓M.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若圓M與y軸有兩個(gè)交點(diǎn),求點(diǎn)M橫坐標(biāo)的取值范圍;
(3)是否存在定圓N,使得圓N與圓M相切?若存在.求出圓N的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的左、右焦點(diǎn)分別為,其右準(zhǔn)線(xiàn)上上存在點(diǎn)(點(diǎn) 軸上方),使為等腰三角形.

⑴求離心率的范圍;

    ⑵若橢圓上的點(diǎn)到兩焦點(diǎn)的距離之和為,求的內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三下學(xué)期假期檢測(cè)考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,, 點(diǎn)是橢圓的一個(gè)頂點(diǎn),△是等腰直角三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò)點(diǎn)分別作直線(xiàn)交橢圓于,兩點(diǎn),設(shè)兩直線(xiàn)的斜率分別為,,且,證明:直線(xiàn)過(guò)定點(diǎn)().

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省三明市高三上學(xué)期三校聯(lián)考數(shù)學(xué)理卷 題型:解答題

(本題滿(mǎn)分14分)     已知橢圓的左、右焦點(diǎn)分別為F1、F2,其中

F2也是拋物線(xiàn)的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且  

(I)求橢圓C1的方程;   (II)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線(xiàn)上,求直線(xiàn)AC的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年云南省德宏州高三高考復(fù)習(xí)數(shù)學(xué)試卷 題型:解答題

(本小題滿(mǎn)分12分)

已知橢圓的左、右焦點(diǎn)分別為、,離心率,右準(zhǔn)線(xiàn)方程為

(I)求橢圓的標(biāo)準(zhǔn)方程;

(II)過(guò)點(diǎn)的直線(xiàn)與該橢圓交于M、N兩點(diǎn),且,求直線(xiàn)的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案