10.已知$\sqrt{2+\frac{2}{3}}=2\sqrt{\frac{2}{3}},\sqrt{3+\frac{3}{8}}=3\sqrt{\frac{3}{8}},\sqrt{4+\frac{4}{15}}=4\sqrt{\frac{4}{15}},…$,若$\sqrt{6+\frac{a}}=6\sqrt{\frac{a}},(a,b∈R)$,則a+b=41.

分析 根據(jù)題意,分析所給的等式,可歸納出等式$\sqrt{n+\frac{n}{{n}^{2}-1}}$=n$\sqrt{\frac{n}{{n}^{2}-1}}$,(n≥2且n是正整數(shù)),將n=6代入可得答案.

解答 解:由題意,依此類(lèi)推,有$\sqrt{n+\frac{n}{{n}^{2}-1}}$=n$\sqrt{\frac{n}{{n}^{2}-1}}$,(n≥2且n是正整數(shù))
當(dāng)n=6時(shí),有a=6,b=62-1=35,
∴a+b=41.
故答案為41.

點(diǎn)評(píng) 本題考查歸納推理,關(guān)鍵是根據(jù)題意所給的等式,發(fā)現(xiàn)其中的共同點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R,a≠0),f(-2)=f(0)=0,f(x)的最小值為-1.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)h(x)=log2[n-f(x)],若此函數(shù)在定義域范圍內(nèi)不存在零點(diǎn),求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知$f(α)=\frac{{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}}{tan(-α-π)sin(-α-π)},(-\frac{π}{2}<α<\frac{π}{2})$
(Ⅰ)化簡(jiǎn)f(α).
(Ⅱ)若$sin(α-\frac{π}{6})=-\frac{1}{5}$,求$f(α+\frac{π}{3})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)不等式|2x-1|<1的解集為M,且a∈M,b∈M.
(1)試比較ab+1與a+b的大。
(2)設(shè)max{A}表示數(shù)集A中的最大數(shù),且$h=max\{\frac{2}{{\sqrt{a}}},\frac{a+b}{{\sqrt{ab}}},\frac{ab+1}{{\sqrt}}\}$,求證:h>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列數(shù)據(jù)中,擬合效果最好的回歸直線方程,其對(duì)應(yīng)的相關(guān)指數(shù)R2為( 。
A.0.27B.0.85C.0.96D.0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若?x>0,4a>x2-x3恒成立,則a的取值范圍為( 。
A.$({\frac{1}{27},+∞})$B.$({\frac{4}{27},+∞})$C.$[{\frac{1}{27},+∞})$D.$[{\frac{4}{27},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若M為拋物線y=2x2第一象限上的點(diǎn),且M到焦點(diǎn)的距離為$\frac{1}{4}$,則M的坐標(biāo)為$({\frac{1}{4},\frac{1}{8}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)f(x)=ln(1+x)-$\frac{2x}{x+2}$,證明:當(dāng)x>0時(shí),f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知f(x)是定義在R上的偶函數(shù),在[0,+∞)上單調(diào)增,且f(2)=1,則滿足f(x-1)>1的x的取值范圍是(-∞,-1)∪(3,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案