如圖,在直三棱柱ABC-A1B1C1中,底面為等腰直角三角形,AC⊥BC,點D是AB的中點,側面BB1C1C是正方形.
(1) 求證AC⊥B1C;(2)求二面角B-CD-B1平面角的正切值.
(1)要證明線線垂直,要通過線面垂直的性質定理來求解,主要是得到AC⊥平面BCC1B1。
(2)
【解析】
試題分析:證明:(1)在直三棱柱ABC-A1B1C1中,CC1⊥平面ABC,
∴CC1⊥AC,
又AC⊥BC,BC∩CC1=C,
所以,AC⊥平面BCC1B1,
所以,AC⊥B1C. 3分
(2)∵△ABC是等腰直角三角形,D為AB中點,
∴CD⊥AB
∵平面ABC⊥平面AA1B1B,平面ABC∩平面AA1B1B=AB,
∴CD ⊥平面AA1B1B,
∵B1D平面AA1B1B,BD平面AA1B1B,
∴CD⊥B1D,CD⊥BD,
∴∠B1DB是二面角B-CD-B1平面角, 6分
不妨設正方形BB1C1C的棱長為2a,則:
在RT△B1DB中,BD=a,BB1=2a,∠B1BD=90º
∴tan∠B1DB==.
∴所求二面角B-CD-B1平面角的正切值為. 8分
考點:二面角,線線垂直
點評:考查了線線垂直和二面角的平面角的求解,屬于基礎題。
科目:高中數(shù)學 來源: 題型:
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
科目:高中數(shù)學 來源:2011年四川省招生統(tǒng)一考試理科數(shù)學 題型:解答題
(本小題共l2分)
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]
P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
科目:高中數(shù)學 來源:2011年高考試題數(shù)學理(四川卷)解析版 題型:解答題
(本小題共l2分)
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一
P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
科目:高中數(shù)學 來源:四川省高考真題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com