精英家教網 > 高中數學 > 題目詳情
已知不等式x2-2x-3<0的解集為A,不等式x2+4x-5<0的解集為B.
(1)求A∪B;
(2)若不等式x2+ax+b<0的解集是A∪B,求ax2+x+b0的解集.
(1) A∪B={x|-5<x<3} (2) {x|x或x-3}.
(1)解二次不等式分別求出A,B然后根據并集的定義求出由兩個集合所有元素組成的集合即是這兩個集合的并集,在寫集合時,要注意集合元素的互異性.
(2)由A∪B={x|-5<x<3}知-5,3是方程的兩個根,從而利用韋達定理可求出a,b的值,再解關于x的二次不等式ax2+x+b0即可.
解:(1)解不等式x2-2x-3<0,得A={x|-1<x<3}.………2分
解不等式x2+4x-5<0,得B={x|-5<x<1},    …………4分
∴A∪B={x|-5<x<3}.     …………………………………6分
(2)由x2+ax+b<0的解集是(-5,3),
,解得         ………………9分
∴2x2+x-150,
得解集為{x|x或x-3}.  ………………12分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

對于任意實數x,不等式恒成立,則實數a的取值范圍是      。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若關于的不等式內有解,則實數的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

不等式(-2)2+2(-2) -4<0,對一切∈R恒成立,則a的取值范圍是(  )
A.(-∞,2]B.(-2,2]C.(-2,2)D.(-∞,2)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若不等式a<2x-x2對于任意的x∈[-2,3]恒成立,則實數a的取值范圍為________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

“不等式對一切實數都成立”的充要條件是_____________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

存在實數,使得成立,則的取值范圍是        .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

不等式的解集是(    )
A.B.
C.,或D.,或

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

不等式的解集是                         

查看答案和解析>>

同步練習冊答案