12.已知直線l經(jīng)過點(1,-2),且與直線m:4x-3y+1=0平行;
(1)求直線l的方程;
(2)求直線l被圓x2+y2=9所截得的弦長.

分析 (1)根據(jù)l∥m,設(shè)l的方程為4x-3y+c=0,把點(1,-2)代入求出c的值,可得l的直線方程;
(2)利用點到直線的距離公式求出圓心到直線l的距離,利用弦長公式求出直線l被圓C截得的弦長.

解答 解:(1)由題意知l∥m,設(shè)l的方程為4x-3y+c=0,
∵點(1,-2)在直線l上,
∴4×1-3×(-2)+c=0,解得c=-10,
∴直線l的方程為4x-3y-10=0;
(2)設(shè)直線l與圓x2+y2=9相交與點A、B,
則|AB|=2$\sqrt{{r}^{2}-eevdwex^{2}}$,其中r=3,
且d為圓心(0,0)到直線l:4x-3y-10=0的距離,
d=$\frac{|4×0-3×0-10|}{\sqrt{{4}^{2}+(-3)^{2}}}$=2,
∴|AB|=2$\sqrt{{r}^{2}-d5szrqt^{2}}$=$2\sqrt{9-4}$=$2\sqrt{5}$.

點評 本題考查直線與圓的位置關(guān)系,點到直線的距離公式,弦長公式,以及直線平行的條件,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知O(0,0),A(2,-1),B(1,2).
(1)求△OAB的面積;
(2)若點C滿足直線BC⊥AB,且AC∥OB,求點C的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.化簡求值:
(1)cos40°(1+$\sqrt{3}$tan10°);
(2)cos$\frac{2π}{7}$cos$\frac{4π}{7}$cos$\frac{6π}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若sin(π-α)=$\frac{3\sqrt{10}}{10}$,且α是銳角,則tan2α=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.實數(shù)x,y滿足的約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,則z=2x+y的最小值為( 。
A.-5B.-3C.3D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)平面直角坐標系xOy中,曲線G:y=$\frac{{x}^{2}}{2}$+$\frac{a}{2}$x-a2(x∈R),a為常數(shù).
(1)若a≠0,曲線G的圖象與兩坐標軸有三個交點,求經(jīng)過這三個交點的圓C的一般方程;
(2)在(1)的條件下,求圓心C所在曲線的軌跡方程;
(3)若a=0,已知點M(0,3),在y軸上存在定點N(異于點M)滿足:對于圓C上任一點P,都有$\frac{|PN|}{|PM|}$為一常數(shù),試求所有滿足條件的點N的坐標及該常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=sin(2x+θ),其中0<θ<2π,若x=$\frac{π}{6}$是函數(shù)的一條對稱軸,且f($\frac{π}{2}$)>f(π),則θ等于( 。
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{7π}{6}$D.$\frac{11π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某高校進行自主招生,先從報名者中篩選出400人參加筆試,再按筆試成績擇優(yōu)選出100人參加面試.現(xiàn)隨機抽取24名筆試者的成績,如表所示:
分數(shù)段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)
人數(shù)234951
據(jù)此估計允許參加面試的分數(shù)線大約是(  )
A.90B.85C.80D.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.圓柱挖去兩個全等的圓錐所得幾何體的三視圖如圖所示,則其表面積為( 。
A.30πB.48πC.66πD.78π

查看答案和解析>>

同步練習(xí)冊答案