18.函數(shù)f(x)=($\frac{1}{2}$)x-x-2的零點(diǎn)所在的區(qū)間為( 。
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

分析 由函數(shù)零點(diǎn)的存在性定理,結(jié)合答案直接代入計(jì)算取兩端點(diǎn)函數(shù)值異號(hào)的即可.

解答 解:f(-1)=2+1-2=1>0,f(0)=1-0-2=-1<0,
由函數(shù)零點(diǎn)的存在性定理,函數(shù)f(x)=($\frac{1}{2}$)x-x-2的零點(diǎn)所在的區(qū)間為(-1,0)
故選,:A

點(diǎn)評(píng) 本題考查函數(shù)零點(diǎn)的判定定理的應(yīng)用,屬基礎(chǔ)知識(shí)、基本運(yùn)算的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓$M:\frac{x^2}{a^2}+{y^2}=1({a>1})$右頂點(diǎn)、上頂點(diǎn)分別為A、B,且圓O:x2+y2=1的圓心到直線AB的距離為$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓M的方程;
(2)若直線l與圓O相切,且與橢圓M相交于P,Q兩點(diǎn),求|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在等差數(shù)列{an}中,a2=3,a3+a6=11
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=an+$\frac{1}{{2}^{{a}_{n}}}$,其中n∈N*,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在半徑為30cm的半圓形鐵皮上截取一塊矩形材料ABCD(點(diǎn)A,B在直徑上,點(diǎn)C,D在半圓周上),并將其卷成一個(gè)以AD為母線的圓柱體罐子的側(cè)面(不計(jì)剪裁和拼接損耗).
(1)設(shè)BC為xcm,AB為ycm,請(qǐng)寫出y關(guān)于x的函數(shù)關(guān)系,并寫出x的取值范圍;
(2)若要求圓柱體罐子的體積最大,應(yīng)如何截。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知直線3x-2y=0與圓(x-m)2+y2=1相交,則正整數(shù)m的值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若甲、乙、丙三組人數(shù)分別為18,24,30,現(xiàn)用分層抽樣方法從甲、乙、丙三組中共抽取12人,則在乙組中抽取的人數(shù)為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為( 。
A.10B.17C.24D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸的一個(gè)頂點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成正三角形,且該三角形的周長(zhǎng)為6
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)F1,F(xiàn)2是橢圓C的左右焦點(diǎn),若橢圓C的一個(gè)內(nèi)接平行四邊形ABCD的一組對(duì)邊過(guò)點(diǎn)F1和F2,求這個(gè)平行四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,則(  )
A.若m∥α,n∥α,則m∥nB.若m∥n,n⊥α,則m⊥αC.若m∥α,m∥β,則α∥βD.若m∥α,α⊥β,則m⊥β

查看答案和解析>>

同步練習(xí)冊(cè)答案