已知雙曲線的焦點與橢圓的焦點重合,且該橢圓的長軸長為,是橢圓上的的動點.
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)設(shè)動點滿足:,直線的斜率之積為,求證:存在定點,
使得為定值,并求出的坐標(biāo);
(3)若在第一象限,且點關(guān)于原點對稱,點軸的射影為,連接 并延長交橢圓于
,求證:以為直徑的圓經(jīng)過點.

(1);(2)存在;(3)證明過程詳見試題解析.

解析試題分析:(1)由雙曲線的焦點與橢圓的焦點重合求出橢圓中的,再由,求出所求橢圓方程為;(2)先設(shè),由,結(jié)合橢圓的標(biāo)準(zhǔn)方程可以得到使得為定值;(3)要證明以為直徑的圓經(jīng)過點,就是證明,詳見解析.
試題解析:(1)解:由題設(shè)可知:雙曲線的焦點為,
所以橢圓中的
又由橢圓的長軸為4得
 
故橢圓的標(biāo)準(zhǔn)方程為: 
(2)證明:設(shè),由可得:

由直線的斜率之積為可得:
 ,即 
由①②可得:…6分
M、N是橢圓上,故
,即 
由橢圓定義可知存在兩個定點,使得動點P到兩定點距離和為定值;
(3)證明:設(shè)
由題設(shè)可知 
由題設(shè)可知斜率存在且滿足.……③
 
將③代入④可得:…⑤  
在橢圓,故 
所以 
因此以為直徑的圓經(jīng)過點.
考點:直線與圓錐曲線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓C=1(ab>0)的左、右焦點分別是F1F2,離心率為,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點P是橢圓C上除長軸端點外的任一點,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點.設(shè)直線PF1,PF2的斜率分別為k1k2.若k≠0,試證明為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線=1(a>0,b>0)的右焦點為F(c,0).
(1)若雙曲線的一條漸近線方程為yxc=2,求雙曲線的方程;
(2)以原點O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點為A,過A作圓的切線,斜率為-,求雙曲線的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上取兩個點,將其坐標(biāo)記錄如下:、、
(1)經(jīng)判斷點在拋物線上,試求出的標(biāo)準(zhǔn)方程;
(2)求拋物線的焦點的坐標(biāo)并求出橢圓的離心率;
(3)過的焦點直線與橢圓交不同兩點且滿足,試求出直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線C:y2=2px(p>0)的焦點為F,拋物線C與直線l1:y=-x的一個交點的橫坐標(biāo)為8.
(1)求拋物線C的方程;
(2)不過原點的直線l2與l1垂直,且與拋物線交于不同的兩點A,B,若線段AB的中點為P,且|OP|=|PB|,求△FAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知命題:方程表示焦點在y軸上的橢圓;
命題:雙曲線的離心率,若為真命題,為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)已知圓Ox2y2=3的半徑等于橢圓E=1(a>b>0)的短半軸長,橢圓E的右焦點F在圓O內(nèi),且到直線lyx的距離為,點M是直線l與圓O的公共點,設(shè)直線l交橢圓E于不同的兩點A(x1y1),B(x2y2).

(1)求橢圓E的方程;
(2)求證:|AF|-|BF|=|BM|-|AM|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的焦點坐標(biāo)為F1(-1,0),F2(1,0),過F2垂直于長軸的直線交橢圓于PQ兩點,且|PQ|=3.
(1)求橢圓的方程;
(2)過F2的直線l與橢圓交于不同的兩點M,N,則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知分別是橢圓的左,右頂點,點在橢圓 上,且直線與直線的斜率之積為

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點為橢圓上除長軸端點外的任一點,直線,與橢圓的右準(zhǔn)線分別交于點
①在軸上是否存在一個定點,使得?若存在,求點的坐標(biāo);若不存在,說明理由;
②已知常數(shù),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案