12.命題:“?x0∈R,x02+x0-1>0”的否定為(  )
A.?x∈R,x2+x-1<0B.?x∈R,x2+x-1≤0
C.?x0∉R,x02+x0-1=0D.?x0∈R,x02+x0-1≤0

分析 直接利用特稱命題的否定是全稱命題寫出結(jié)果即可.

解答 解:因為特稱命題的否定是全稱命題,所以,命題:“?x0∈R,x02+x0-1>0”的否定為:?x∈R,x2+x-1≤0.
故選:B.

點評 本題考查命題的否定特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

2.如圖,點O為△ABC的重心,且OA⊥OB,AB=4,則$\overrightarrow{AC}•\overrightarrow{BC}$的值為32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.集合A=$\{x|\left\{\begin{array}{l}3x+6>0\\ 2x-10<0\end{array}\right._{\;}^{\;}\},B=\{x|m+1≤x≤2m-1\}$,若B⊆A求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設(shè)不等式ax2+bx+c<0的解集是(-∞,1)∪(3,+∞),則不等式cx2+bx+a>0的解集是($\frac{1}{3}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列結(jié)論中不正確的( 。
A.logab•logbc•logca=1B.函數(shù)f(x)=ex滿足f(a+b)=f(a)•f(b)
C.函數(shù)f(x)=ex滿足f(a•b)=f(a)•f(b)D.若xlog34=1,則4x+4-x=$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)y=sin x•cos x的導數(shù)是(  )
A.cos2x+sin2xB.cos2x-sin2xC.2cos x•sin xD.cos x•sin x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.復數(shù) z=$\frac{3-i}{1-2i}$的共軛復數(shù)是1-i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某商場對顧客實行購物優(yōu)惠活動,規(guī)定一次購物付款總額:①如果不超過200元,則不予優(yōu)惠;②如果超過200元但不超過500元,則按標價給予9折優(yōu)惠;③如果超過500元,其500元按②給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠.若設(shè)一次購物總額為x元,優(yōu)惠后實際付款為y元.
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)若某人兩次去購物,分別付款168元和423元,假設(shè)她一次購買上述同樣的商品,則應付款多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知公差不為0的等差數(shù)列{an}中,a1=7,且a2+1,a4+1,a8+1成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=$\frac{3}{a_n}$,求適合方程b1b2+b2b3+…+bnbn+1=$\frac{45}{32}$的正整數(shù)n的值.

查看答案和解析>>

同步練習冊答案