設(shè)函數(shù)f(x)=x3-
1
2
x2-2x-
2
3

(1)求函數(shù)f(x)的單調(diào)遞增、遞減區(qū)間;
(2)當(dāng)x∈[-1,1]時(shí),f(x)<m恒成立,求實(shí)數(shù)m的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)恒成立問(wèn)題
專題:綜合題,導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)求導(dǎo)數(shù),利用導(dǎo)數(shù)的正負(fù),可得函數(shù)的單調(diào)區(qū)間;
(2)恒成立問(wèn)題可轉(zhuǎn)化成f(x)max<m即可.
解答: 解:(1)f′(x)=3x2-x-2=0,得x=1,-
2
3

在(-∞,-
2
3
)和[1,+∞)上f′(x)>0,f(x)為增函數(shù);
在(-
2
3
,1)上f′(x)<0,f(x)為減函數(shù).
所以所求f(x)的單調(diào)增區(qū)間為(-∞,-
2
3
]和[1,+∞),單調(diào)減區(qū)間為[-
2
3
,1].
(2)由(1)知,當(dāng)x∈[-1,-
2
3
]時(shí),f′(x)>0,[-
2
3
,1]時(shí),f′(x)<0
∴f(x)≤f(-
2
3
)=
4
27

∵當(dāng)x∈[-1,1]時(shí),f(x)<m恒成立,
∴m>
4
27
點(diǎn)評(píng):本題以函數(shù)為載體,考查函數(shù)的單調(diào)性,同時(shí)考查了恒成立問(wèn)題的處理,注意利用好導(dǎo)數(shù)工具.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知兩點(diǎn)F1(-2,0),F(xiàn)2(2,0),動(dòng)點(diǎn)P滿足條件||PF1|-|PF2||=2
3

(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程E.
(Ⅱ)是否存在過(guò)點(diǎn)G(2,2)的直線l與曲線E交于不同的兩點(diǎn)N,N,使G平分線段MN,試證明你的結(jié)論.
(Ⅲ)若直線l:y=kx+
2
與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且
OA
OB
>2(其中O為原點(diǎn)),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線的頂點(diǎn)是橢圓C:
x2
4
+
y2
3
=1的中心O,焦點(diǎn)與該橢圓的右焦點(diǎn)重合.
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)橢圓C的右準(zhǔn)線交x軸于點(diǎn)Q,過(guò)點(diǎn)Q的直線l交拋物線于D、E兩點(diǎn).求△ODE面積的最小值;
(Ⅲ)設(shè)A、B分別為橢圓C的左、右頂點(diǎn),P為右準(zhǔn)線上不同于點(diǎn)Q的任意一點(diǎn),若直線AP、BP分別與橢圓相交于異于A、B的點(diǎn)M、N.求證:點(diǎn)B在以MN為直徑的圓內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們已經(jīng)學(xué)過(guò)了等差數(shù)列,你是否想到過(guò)有沒(méi)有等和數(shù)列呢?
(1)類比“等差數(shù)列”給出“等和數(shù)列”的定義;
(2)探索等和數(shù)列{an}的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)各有什么特點(diǎn)?并加以說(shuō)明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四邊形ABCD為直角梯形,AB∥CD,∠BAD=90°,PA⊥平面ABCD,CD=2,PA=AD=AB=1,E為PC的中點(diǎn).
(1)求證:EB∥平面PAD;
(2)求直線BD與平面PCD所成的角;
(3)求二面角A-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)F,y軸右側(cè)的點(diǎn)A在橢圓E上運(yùn)動(dòng),直線MA與圓C:x2+y2=b2相切于點(diǎn)M(x0,y0).
(1)求直線MA的方程;
(2)求證:|AF|+|AM|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)P(x0,y0)在橢圓
x2
a2
+
y2
b2
=1內(nèi),求被點(diǎn)P所平分的中點(diǎn)弦的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P(-2,-2),Q(0,-1),取一點(diǎn)R(2,m),要使PR+RQ最小,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A、B分別是射線OM,ON上的兩點(diǎn),給出下列向量:
OA
+2
OB
;②
1
2
OA
+
1
3
OB
;③
3
4
OA
+
1
3
OB
;④
3
4
OA
+
1
5
OB
;⑤
3
4
OA
-
1
5
OB
這些向量中以O(shè)為起點(diǎn),終點(diǎn)在陰影區(qū)域內(nèi)的是
 
.(填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案