(2014·廈門模擬)樣本中共有五個(gè)個(gè)體,其值分別為a,0,1,2,3.若該樣本的平均值為1,則樣本方差為(  )

A. B. C. D.2

 

D

【解析】因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719491234698400/SYS201411171949133782711494_DA/SYS201411171949133782711494_DA.001.png">=1,得a=-1,

所以s2=[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第八章 平面解析幾何(解析版) 題型:填空題

曲線C:y=(a>0,b>0)與y軸的交點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)稱為“望點(diǎn)”,以“望點(diǎn)”為圓心,凡是與曲線C有公共點(diǎn)的圓,皆稱之為“望圓”,則當(dāng)a=1,b=1時(shí),所有的“望圓”中,面積最小的“望圓”的面積為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用(解析版) 題型:解答題

(2014·孝感模擬)已知定義在區(qū)間[0,2]上的兩個(gè)函數(shù)f(x)和g(x),其中f(x)=-x2+2ax+1+a2,g(x)=x-+.

(1)求函數(shù)f(x)的最小值.

(2)對(duì)于?x1,x2∈[0,2],f(x1)>g(x2)恒成立,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用(解析版) 題型:選擇題

(2014·長(zhǎng)沙模擬)某公司在甲、乙兩地銷售一種品牌車,利潤(rùn)(單位:萬(wàn)元)分別為L(zhǎng)1=5.06x-0.15x2和L2=2x,其中x為銷售量(單位:輛).若該公司在這兩地共銷售15輛車,則能獲得的最大利潤(rùn)為(  )

A.45.606萬(wàn)元 B.45.6萬(wàn)元

C.45.56萬(wàn)元 D.45.51萬(wàn)元

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第九章計(jì)數(shù)原理與概率隨機(jī)變量及其分布(解析版) 題型:填空題

在2014年元旦期間,某市物價(jià)部門對(duì)本市五個(gè)商場(chǎng)銷售的某商品一天的銷售量及其價(jià)格進(jìn)行調(diào)查,五個(gè)商場(chǎng)的售價(jià)x元和銷售量y件之間的一組數(shù)據(jù)如表所示:

價(jià)格x

9

9.5

10

10.5

11

銷售量y

11

10

8

6

5

 

通過(guò)分析,發(fā)現(xiàn)銷售量y與商品的價(jià)格x具有線性相關(guān)關(guān)系,則銷售量y關(guān)于商品的價(jià)格x的線性回歸方程為__________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第九章計(jì)數(shù)原理與概率隨機(jī)變量及其分布(解析版) 題型:選擇題

閱讀程序框圖,如果輸出的函數(shù)值在區(qū)間內(nèi),那么輸入的實(shí)數(shù)x的取值范圍是(  )

A.(-∞,-2] B.[-2,-1] C.[-1,2] D.[2,+∞)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第三章 三角函數(shù)、解三角形(解析版) 題型:填空題

在△ABC中,2sin2=sinA,sin(B-C)=2cosBsinC,則=____________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第七章 立體幾何(解析版) 題型:解答題

已知等腰梯形PDCB中(如圖),PB=3,DC=1,PD=BC=,A為PB邊上一點(diǎn),且PA=1,將△PAD沿AD折起,使平面PAD⊥平面ABCD(如圖).

(1)證明:平面PAD⊥平面PCD.

(2)試在棱PB上確定一點(diǎn)M,使截面AMC把幾何體分成的兩部分VPDCMA∶VMACB=2∶1.

(3)在M滿足(2)的情況下,判斷直線PD是否平行平面AMC.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 集合、常用邏輯用語(yǔ)、不等式、函數(shù)與導(dǎo)數(shù)(解析版) 題型:選擇題

“φ=π”是“曲線y=sin(2x+φ)過(guò)坐標(biāo)原點(diǎn)”的( )

A.充分而不必要條件

B.必要而不充分條件

C.充分必要條件

D.既不充分也不必要條件

 

查看答案和解析>>

同步練習(xí)冊(cè)答案