設(shè)3,4,x是一個(gè)鈍角三角形的三邊長(zhǎng),且x是最大邊,則x的取值范圍是
 
考點(diǎn):余弦定理
專題:解三角形
分析:由題意和余弦定理列出不等式,求出x的范圍,由三邊關(guān)系求出x的取值范圍,再把它們并在一起.
解答: 解:因?yàn)閤是一個(gè)鈍角三角形的最大邊,
所以x所對(duì)的角一定是鈍角,
由余弦定理得,
32+42-x2
2×3×4
<0,解得x>5,
3+4>x
3+x>4
,則1<x<7,
綜上可得,5<x<7,x的取值范圍是(5,7),
故答案為:(5,7).
點(diǎn)評(píng):本題考查余弦定理,邊角關(guān)系,以及三角形中的三邊關(guān)系,容易忽略三角形中的三邊關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|x∈R|ax2+ax+1=0}有兩個(gè)元素,則a的范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=2py(p>0),直線l:y=x+1與拋物線C交于A,B兩點(diǎn),設(shè)直線OA,OB的斜率分別為k1.k2(其中O為坐標(biāo)原點(diǎn)),且k1•k2=-
1
4

(1)求p的值;
(2)如圖,已知點(diǎn)M(x0,y0)為圓:x2+y2-y=0上異于O點(diǎn)的動(dòng)點(diǎn),過點(diǎn)M的直線m交拋物線C于E,F(xiàn)兩點(diǎn).若M為線段EF的中點(diǎn),求|EF|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,cosx),
b
=(cosx,sinx-2cosx),f(x)=
a
b

(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè)0≤x≤
π
2
,①若
a
b
,求x;②求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在等腰直角三角形ABC中,AC=AB=2
2
,E為AB的中點(diǎn),點(diǎn)F在BC 上,且EF⊥BC.現(xiàn)沿EF 將△BEF 折1起到△PEF的位置,使PF⊥CF,點(diǎn)D 在PC上,且PD=
1
2
DC.
(1)求證:AD∥平面PEF;
(2)求二面角A-PC-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,容量為9的4個(gè)樣本,它們的平均數(shù)都是5,頻率條形圖如下,則標(biāo)準(zhǔn)差最大的一組是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)非零向量向量
OA
=
a
,
OB
=
b
,已知|
a
|=2|
b
|,(
a
+
b
)⊥
b

(1)求
a
b
的夾角;
(2)在如圖所示的直角坐標(biāo)系xOy中,設(shè)B(1,0),已知
M(
1
2
5
3
6
),
OM
1
a
2
b
(λ1,λ2∈R),求λ12的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,正方形ABCD邊長(zhǎng)為2,圓D的半徑為1,E是圓D上任意一點(diǎn),則
AE
CE
的最小值為(  )
A、1+2
2
B、-1-2
2
C、1-
2
D、1-2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列隨機(jī)變量中,不是離散型隨機(jī)變量的是
 

①某地車展中,預(yù)定各類汽車的總?cè)藬?shù)X;
②北京故宮某周每天接待的游客人數(shù);
③正弦曲線上的點(diǎn)P到x軸的距離X;
④小麥的畝產(chǎn)量X;
⑤王老師在一次英語(yǔ)課上提問的學(xué)生人數(shù)X.

查看答案和解析>>

同步練習(xí)冊(cè)答案