【題目】某校高一年級(jí)三個(gè)班共有學(xué)生120名,這三個(gè)班的男女生人數(shù)如下表所示,已知在全年級(jí)中隨機(jī)抽取1名學(xué)生,抽到二班女生的概率是0.2,則_________.現(xiàn)用分層抽樣的方法在全年級(jí)抽取30名學(xué)生,則應(yīng)在三班抽取的學(xué)生人數(shù)為________.

一班

二班

三班

女生人數(shù)

20

男生人數(shù)

20

20

【答案】24 9

【解析】

由于每個(gè)個(gè)體被抽到的概率都相等,由,可得得的值.先求出三班總?cè)藬?shù)為 36,用分層抽樣的方法在全年級(jí)抽取30名學(xué)生,求出每個(gè)學(xué)生被抽到的概率為,用三班總?cè)藬?shù)乘以此概率,即得所求.

由題意可得,解得

三班總?cè)藬?shù)為,用分層抽樣的方法在全年級(jí)抽取30名學(xué)生,每個(gè)學(xué)生被抽到的概率為

故應(yīng)從三班抽取的人數(shù)為,

故答案為: 24; 9

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)fx)=log2kx2+4kx+3).①若fx)的定義域?yàn)?/span>R,則k的取值范圍是_____;②若fx)的值域?yàn)?/span>R,則k的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)求

2)我們知道二項(xiàng)式的展開式,若等式兩邊對(duì)求導(dǎo)得,令.利用此方法解答下列問題:

①求

②求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義域?yàn)?/span>的奇函數(shù),當(dāng)時(shí),.

1)求出函數(shù)R上的解析式;

2)畫出函數(shù)的圖象,并根據(jù)圖象寫出的單調(diào)區(qū)間.

3)求使時(shí)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體中,底面為菱形,,,,且平面底面,平面底面

(1)證明:平面

(2)求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,三班共有140名學(xué)生,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲得了部分學(xué)生一周的鍛煉時(shí)間,數(shù)據(jù)如下表(單位:小時(shí))

6.5

7

7.5

7

8

9

10

11

4.5

6

7.5

9

10.5

12

1)試估計(jì)班的學(xué)生人數(shù);

2)從班和班抽出的人數(shù)中,各隨機(jī)選取一人,班選出的人記為甲,班選出的人記為乙,假設(shè)所有學(xué)生鍛煉時(shí)間互不影,求該周甲鍛煉時(shí)間比乙的鍛煉時(shí)間長的概率;

3)再從,,三班中各隨機(jī)抽取一名學(xué)生,設(shè)新抽取的學(xué)生該周鍛煉時(shí)間分別為7,9,8.25(單位:小時(shí)),這3個(gè)新數(shù)據(jù)與表格構(gòu)成的新樣本的平均數(shù)記為,表格中數(shù)據(jù)的平均數(shù)記為,試判斷的大。ńY(jié)論不需要證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的左右焦點(diǎn),點(diǎn)在橢圓上,且.

(1)求橢圓的方程;

(2)過的直線分別交橢圓,且,問是否存在常數(shù),使得等差數(shù)列?若存在,求出的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到函數(shù)的圖象,只要將函數(shù)的圖象( )

A.每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>(縱坐標(biāo)不變),再將所得圖象向左平移個(gè)長度

B.每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>(縱坐標(biāo)不變),再將所得圖象向左平移個(gè)長度

C.向左平移個(gè)長度,再將所得圖象每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>(縱坐標(biāo)不變)

D.向左平移個(gè)長度,再將所得圖象每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>(縱坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中, , , 平面,在平行四邊形中, , ,

(1)求證: 平面;

(2)求與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案