設(shè)為拋物線 ()的焦點(diǎn),為該拋物線上三點(diǎn),若,且

(Ⅰ)求拋物線的方程;

(Ⅱ)點(diǎn)的坐標(biāo)為(,)其中,過點(diǎn)F作斜率為的直線與拋物線交于、兩點(diǎn),、兩點(diǎn)的橫坐標(biāo)均不為,連結(jié)并延長交拋物線于、兩點(diǎn),設(shè)直線的斜率為.若,求的值.

 

【答案】

(Ⅰ)(Ⅱ).

【解析】

試題分析:(Ⅰ)利用向量和為0得到三點(diǎn)橫坐標(biāo)和的關(guān)系,結(jié)合三個(gè)向量的模為6得到的值,求出拋物線的方程;(Ⅱ)通過點(diǎn)坐標(biāo)表示斜率,設(shè)直線方程,聯(lián)立直線方程與拋物線方程利用韋達(dá)定理得到關(guān)于的方程,計(jì)算得到.

 (Ⅰ)設(shè)

 2分

,    所以 .

           4分

所以,所以為所求.                                                     5分

(Ⅱ)設(shè)

,同理        7分

所以

設(shè)AC所在直線方程為

聯(lián)立得,,所以 ,       9分

同理, .

所以                                       11分

設(shè)AB所在直線方程為,聯(lián)立得, 

所以                                                                        12分

考點(diǎn):拋物線標(biāo)準(zhǔn)方程,直線與拋物線聯(lián)立,韋達(dá)定理應(yīng)用.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線有光學(xué)性質(zhì): 由其焦點(diǎn)射出的光線經(jīng)拋物線折射后,沿平行于拋物線對(duì)稱軸的方向射出,今有拋物線y2=2px(p>0)  一光源在點(diǎn)M(,4)處,由其發(fā)出的光線沿平行于拋物線的軸的方向射向拋物線上的點(diǎn)P,折射后又射向拋物線上的點(diǎn)Q,再折射后,又沿平行于拋物線的軸的方向射出,途中遇到直線l: 2x-4y-17=0上的點(diǎn)N,再折射后又射回點(diǎn)M(如下圖所示)

 (1)設(shè)P、Q兩點(diǎn)坐標(biāo)分別為(x1,y1)、(x2,y2),證明:y1·y2=-p2;

(2)求拋物線的方程;

(3)試判斷在拋物線上是否存在一點(diǎn),使該點(diǎn)與點(diǎn)M關(guān)于PN所在的直線對(duì)稱?若存在,請(qǐng)求出此點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線有光學(xué)性質(zhì):由其焦點(diǎn)射出的光線經(jīng)拋物線折射后,沿平行于拋物線對(duì)稱軸的方向射出,今有拋物線y2=2px(p>0).一光源在點(diǎn)M(,4)處,由其發(fā)出的光線沿平行于拋物線的軸的方向射向拋物線上的點(diǎn)P,折射后又射向拋物線上的點(diǎn)Q,再折射后,又沿平行于拋物線的軸的方向射出,途中遇到直線l:2x-4y-17=0上的點(diǎn)N,再折射后又射回點(diǎn)M(如圖所示).

(1)設(shè)P、Q兩點(diǎn)坐標(biāo)分別為(x1,y1)、(x2,y2),證明y1·y2=-p2;

(2)求拋物線的方程;

(3)試判斷在拋物線上是否存在一點(diǎn),使該點(diǎn)與點(diǎn)M關(guān)于PN所在的直線對(duì)稱?若存在,請(qǐng)求出此點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線有光學(xué)性質(zhì):由其焦點(diǎn)射出的光線經(jīng)拋物線折射后,沿平行于拋物線對(duì)稱軸的方向射出.今有拋物線y2=2px(p>0),一光源在點(diǎn)M(,4)處,由其發(fā)出的光線沿平行于拋物線對(duì)稱軸的方向射向拋物線上的點(diǎn)P,折射后又射向拋物線上的點(diǎn)Q,再折射后,又沿平行于拋物線對(duì)稱軸的方向射出,途中遇到直線l:2x-4y-17=0上的點(diǎn)N,再折射后又射回點(diǎn)M(如圖所示).

(1)設(shè)P、Q兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),證明:y1y2=-p2;

(2)求拋物線的方程;

(3)試判斷在拋物線上是否存在一點(diǎn),使該點(diǎn)與點(diǎn)M關(guān)于PN所在的直線對(duì)稱?若存在,請(qǐng)求出此點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案