【題目】汕尾市基礎(chǔ)教育處為調(diào)查在校中學(xué)生每天放學(xué)后的自學(xué)時(shí)間情況,在本市的所有中學(xué)生中隨機(jī)抽取了120名學(xué)生進(jìn)行調(diào)查,現(xiàn)將日均自學(xué)時(shí)間小于1小時(shí)的學(xué)生稱為“自學(xué)不足”者根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)后,得到如下列聯(lián)表,已知在調(diào)查對(duì)象中隨機(jī)抽取1人,為“自學(xué)不足”的概率為

非自學(xué)不足

自學(xué)不足

合計(jì)

配有智能手機(jī)

30

沒有智能手機(jī)

10

合計(jì)

請(qǐng)完成上面的列聯(lián)表;

根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認(rèn)為“自學(xué)不足”與“配有智能手機(jī)”有關(guān)?

附表及公式: ,其中

【答案】(1)列聯(lián)表見解析;(2)有.

【解析】

由題意可得,自學(xué)不足的認(rèn)識(shí)為,非自學(xué)不足的人數(shù)80人,可得列聯(lián)表;

代入計(jì)算公式結(jié)合表格即可作出判斷.

由題意可得,自學(xué)不足的認(rèn)識(shí)為,非自學(xué)不足的人數(shù)80人,結(jié)合已知可得下表,

根據(jù)上表可得

的把握認(rèn)為“自學(xué)不足”與“配在智能手機(jī)”有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】樹立和踐行綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生的理念越來(lái)越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,現(xiàn)從參與調(diào)查的人群中隨機(jī)選出20人的樣本,并將這20人按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示

1)求a的值.

2)根據(jù)頻率分布直方圖,估計(jì)參與調(diào)查人群的樣本數(shù)據(jù)的分位數(shù)(保留兩位小數(shù)).

3)若從年齡在的人中隨機(jī)抽取兩位,求兩人恰有一人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)函數(shù), , 為自然對(duì)數(shù)的底數(shù).當(dāng)時(shí),若, ,不等式成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為, .

1)求數(shù)列的通項(xiàng)公式;

2)令,設(shè)數(shù)列的前項(xiàng)和為,;

3)令,對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為, ,且離心率為, 為橢圓上任意一點(diǎn),當(dāng)時(shí), 的面積為1.

(1)求橢圓的方程;

(2)已知點(diǎn)是橢圓上異于橢圓頂點(diǎn)的一點(diǎn),延長(zhǎng)直線, 分別與橢圓交于點(diǎn), ,設(shè)直線的斜率為,直線的斜率為,求證: 為定值.

【答案】(1);(2)

【解析】試題分析:(1)設(shè)由題,由此求出,可得橢圓的方程;

(2)設(shè), ,

當(dāng)直線的斜率不存在時(shí),可得;

當(dāng)直線的斜率不存在時(shí),同理可得.

當(dāng)直線、的斜率存在時(shí),,

設(shè)直線的方程為,則由消去通過運(yùn)算可得

,同理可得,由此得到直線的斜率為

直線的斜率為,進(jìn)而可得.

試題解析:(1)設(shè)由題,

解得,則,

橢圓的方程為.

(2)設(shè) ,

當(dāng)直線的斜率不存在時(shí),設(shè),則,

直線的方程為代入,可得,

, ,則

直線的斜率為,直線的斜率為,

,

當(dāng)直線的斜率不存在時(shí),同理可得.

當(dāng)直線、的斜率存在時(shí),,

設(shè)直線的方程為,則由消去可得:

,

,則,代入上述方程可得

,則

,

設(shè)直線的方程為,同理可得,

直線的斜率為,

直線的斜率為,

.

所以,直線的斜率之積為定值,即.

型】解答
結(jié)束】
21

【題目】已知函數(shù) ,在處的切線方程為.

(1)求, ;

(2)若,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過橢圓的右焦點(diǎn)F作直線交橢圓于MN兩點(diǎn),H為線段MN的中點(diǎn),且OH的斜率為,設(shè)點(diǎn)

求該橢圓的方程;

若點(diǎn)P是橢圓上的動(dòng)點(diǎn),求線段PA的中點(diǎn)G的軌跡方程;

過原點(diǎn)的直線交橢圓于B、C兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某校高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表如下,頻率分布直方圖如圖:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30)

2

0.05

合計(jì)

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);

(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年春節(jié)突如其來(lái)的新型冠狀病毒肺炎在湖北爆發(fā),為了打贏疫情防控阻擊戰(zhàn),我們執(zhí)行了延長(zhǎng)假期政策,在延長(zhǎng)假期面前,我們停課不停學(xué),河南省教育廳組織部分優(yōu)秀學(xué)校的優(yōu)秀教師錄播《名師同步課堂》,我校高一年級(jí)要在甲、乙、丙、丁、戊5位數(shù)學(xué)教師中隨機(jī)抽取3人參加錄播課堂,則甲、乙兩位教師同時(shí)被選中的概率為( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC在內(nèi)角A、B、C的對(duì)邊分別為a,b,c,已知a=bcosC+csinB.

)求B;

)若b=2,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案