已知函數(shù)f(x)=x2的圖象上一點(diǎn)(1,1)及鄰近一點(diǎn)(1+△x,1+△y),則
△y
△x
等于( 。
A、2
B、2+△x
C、2+2△x
D、2△x+(△x)2
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:明確△y的意義,根據(jù)函數(shù)的解析式求出△y的表達(dá)式,即可得到答案.
解答: 解:∵△y=(1+△x)2-1=△x2+2△x,
△y
△x
═△x+2,
故選:B
點(diǎn)評(píng):本題考查△y的意義,即函數(shù)在點(diǎn)(1,1)的變化量,先求△y,即可得到
△y
△x
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>1,橢圓C:
x2
a2
+y2
=1的左、右焦點(diǎn)分別為F1,F(xiàn)2.直線l:x=ay+
a2
2
與橢圓C交于A,B兩點(diǎn),
(Ⅰ)求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)△AF1F2,△BF1F2的重心分別為G,H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
(a>b>0)的離心率
2
2
,橢圓上任意一點(diǎn)到右焦點(diǎn)F的距離的最大值為
2
+1,過M(2,0)任作一條斜率為k(k≠0)的直線l與橢圓交與不同的兩點(diǎn)A、B,點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為Q.
(1)當(dāng)k=-
3
3
時(shí),求證:Q、F、B三點(diǎn)共線;
(2)求△MBQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有10個(gè)數(shù),它們能構(gòu)成一個(gè)以l為首項(xiàng),-3為公比的等比數(shù)列,若從這10個(gè)數(shù)中隨機(jī)抽取一個(gè)數(shù),則這個(gè)數(shù)大于8的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=
x2-xy+y2
,b=p
xy
,c=x+y,若對(duì)任意正實(shí)數(shù)x,y都存在以a,b,c為三邊的三角形,則實(shí)數(shù)p的取值范圍是( 。
A、(1,3)
B、(0,1)∪(3,+∞)
C、(2,4)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
π
2
x+log2x的零點(diǎn)所在區(qū)間為( 。
A、[0,
1
4
]
B、[
1
4
1
2
]
C、[
1
2
,
3
4
]
D、[
3
4
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=x-x3,x∈[0,2]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正三棱柱ABC-A1B1C1中,棱AA1=AB=a,且點(diǎn)D、E分別為棱AA1、B1C1的中點(diǎn).
(1)求證:A1E∥面BDC1;
(2)求二面角C1-BD-B1的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-4ax+2a+30的值非負(fù),求關(guān)于x的方程
x
a
+3=|a-1|+1的最大根與最小根.

查看答案和解析>>

同步練習(xí)冊(cè)答案