要制作一個(gè)如圖的框架(單位:m),要求所圍成的總面積為19.5(m2),其中ABCD是一個(gè)矩形,EFCD是一個(gè)等腰梯形,梯形高h=AB,tan∠FED=,設(shè)AB=xm,BC=ym.
(1)求y關(guān)于x的表達(dá)式;
(2)如何設(shè)計(jì)x、y的長(zhǎng)度,才能使所用材料最少?
(1)y=-x (2)AB=3m,BC=4m
【解析】(1)如圖,在等腰梯形CDEF中,DH是高.
依題意:DH=AB=x,EH=×x=x,
∴=xy+ x=xy+x2,∴y=-x.
∵x>0,y>0,∴-x>0,解之得0<x<.
∴所求表達(dá)式為y=-x .
(2)在Rt△DEH中,∵tan∠FED=,∴sin∠FED=,
∴DE==x×=x,
∴l=(2x+2y)+2×x+=2y+6x=-x+6x=+x≥2=26,
當(dāng)且僅當(dāng)=x,即x=3時(shí)取等號(hào),
此時(shí)y=-x=4,
∴AB=3m,BC=4m時(shí),能使整個(gè)框架所用材料最少.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第3課時(shí)練習(xí)卷(解析版) 題型:填空題
若函數(shù)f(x)=ax(a>0,a≠1)在[-1,2]上的最大值為4,最小值為m,且函數(shù)g(x)=(1-4m)在[0,+∞)上是增函數(shù),則a=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第1課時(shí)練習(xí)卷(解析版) 題型:解答題
判斷下列對(duì)應(yīng)是否是從集合A到集合B的函數(shù).
(1) A=B=N*,對(duì)應(yīng)法則f:x→y=|x-3|,x∈A,y∈B;
(2) A=[0,+∞),B=R,對(duì)應(yīng)法則f:x→y,這里y2=x,x∈A,y∈B;
(3) A=[1,8],B=[1,3],對(duì)應(yīng)法則f:x→y,這里y3=x,x∈A,y∈B;
(4) A={(x,y)|x、y∈R},B=R,對(duì)應(yīng)法則:對(duì)任意(x,y)∈A,(x,y)→z=x+3y,z∈B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第14課時(shí)練習(xí)卷(解析版) 題型:填空題
關(guān)于函數(shù)f(x)=lg(x>0,x∈R),下列命題正確的是________.(填序號(hào))
①函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱;
②在區(qū)間(-∞,0)上,函數(shù)y=f(x)是減函數(shù);
③函數(shù)y=f(x)的最小值為lg2;
④在區(qū)間(1,+∞)上,函數(shù)y=f(x)是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第13課時(shí)練習(xí)卷(解析版) 題型:解答題
某建筑公司要在一塊寬大的矩形地面(如圖所示)上進(jìn)行開(kāi)發(fā)建設(shè),陰影部分為一公共設(shè)施建設(shè)不能開(kāi)發(fā),且要求用欄柵隔開(kāi)(欄柵要求在一直線上),公共設(shè)施邊界為曲線f(x)=1-ax2(a>0)的一部分,欄柵與矩形區(qū)域的邊界交于點(diǎn)M、N,交曲線于點(diǎn)P,設(shè)P(t,f(t)).
(1)將△OMN(O為坐標(biāo)原點(diǎn))的面積S表示成t的函數(shù)S(t);
(2)若在t=處,S(t)取得最小值,求此時(shí)a的值及S(t)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第13課時(shí)練習(xí)卷(解析版) 題型:解答題
如圖,ABCD是正方形空地,邊長(zhǎng)為30m,電源在點(diǎn)P處,點(diǎn)P到邊AD、AB距離分別為9m、3m.某廣告公司計(jì)劃在此空地上豎一塊長(zhǎng)方形液晶廣告屏幕MNEF,MN∶NE=16∶9.線段MN必須過(guò)點(diǎn)P,端點(diǎn)M、N分別在邊AD、AB上,設(shè)AN=x(m),液晶廣告屏幕MNEF的面積為S(m2).
(1)用x的代數(shù)式表示AM;
(2)求S關(guān)于x的函數(shù)關(guān)系式及該函數(shù)的定義域;
(3)當(dāng)x取何值時(shí),液晶廣告屏幕MNEF的面積S最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第13課時(shí)練習(xí)卷(解析版) 題型:填空題
某商品在近30天內(nèi)每件的銷售價(jià)格P(元)與時(shí)間t(天)的函數(shù)關(guān)系為P=且該商品的日銷售量Q與時(shí)間t(天)的函數(shù)關(guān)系為Q=-t+40(0<t≤30,t∈N),則這種商品日銷量金額最大的一天是30天中的第________天.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第12課時(shí)練習(xí)卷(解析版) 題型:解答題
若函數(shù)f(x)=-+blnx在(1,+∞)上是減函數(shù),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第10課時(shí)練習(xí)卷(解析版) 題型:填空題
若函數(shù)f(x)=x3+x2-2x-2的一個(gè)正數(shù)零點(diǎn)附近的函數(shù)值用二分法計(jì)算,其參考數(shù)據(jù)如下:
f(1)=-2 | f(1.5)=0.625 | f(1.25)=-0.984 |
f(1.375)=-0.260 | f(1.4375)=0.162 | f(1.40625)=-0.054 |
那么方程x3+x2-2x-2=0的一個(gè)近似根為________(精確到0.1).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com