已知數(shù)列{bn}滿足條件:首項b1=1,前n項之和Bn=
3n2-n
2

(1)求數(shù)列{bn}的通項公式;
(2)設(shè)數(shù)列{an}的滿足條件:an=(1+
1
bn
) an-1,且a1=2,試比較an
3bn+1
的大小,并證明你的結(jié)論.
分析:(1)由bn=Bn-Bn-1=
3n2-n
2
-
3(n-1)2-(n-1)
2
=3n-2,能得到數(shù)列{bn}的通項公式.
(2)由an=(1+
1
bn
)an-1,得
an
an-1
=1+
1
bn
,an=
an
an-1
an-1
an-2
a2
a1
a1
,由a1=2,bn=3n-2知,an=(1+
1
3n-2
)(1+
1
3n-5
)(1+
1
4
)2=(1+1)(1+
1
4
)(1+
1
3n-2
),由此入手,利用數(shù)學(xué)歸納法能夠證明an>
3bn+1
解答:解:(1)當(dāng)n>1時,bn=Bn-Bn-1
=
3n2-n
2
-
3(n-1)2-(n-1)
2
=3n-2
令n=1得b1=1,
∴bn=3n-2.(5分)
(2)由an=(1+
1
bn
)an-1,得
an
an-1
=1+
1
bn

∴an=
an
an-1
an-1
an-2
a2
a1
a1

由a1=2,bn=3n-2知,
an=(1+
1
3n-2
)(1+
1
3n-5
)(1+
1
4
)2
=(1+1)(1+
1
4
)(1+
1
3n-2

3bn+1
=
33(n+1)-2
=
33n+1
,(5分)
設(shè)cn=
33n+1
,
當(dāng)n=1時,有(1+1)=
38
33×1+1
=
34

當(dāng)n=2時,有an=(1+1)(1+
1
4
)=
5
2

=
3
125
8
3
56
8
=
33×2+1
=cn
假設(shè)n=k(k≥1)時an>cn成立,
即(1+1)(1+
1
4
)(1+
1
3k-2
)>
33k+1
成立,
則n=k+1時,
左邊═(1+1)(1+
1
4
)(1+
1
3k-2
)(1+
1
3(k+1)-2

33k+1
(1+
1
3(k+1)-2
)=
33k+1
3k+2
3k+1
(3分)
右邊=ck+1=
33(k+1)+1
=
33k+4

由(ak+1)3-(ck+13=(3k+1)
(3k+2)3
(3k+1)3
-(3k+4)
=
(3k+2)3-(3k+4)(3k+1)2
(3k+1)2

=
9k+4
(3k+1)2
>0,得ak+1>ck+1成立.
綜合上述,an>cn對任何正整數(shù)n都成立.(3分)
點評:本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要注意數(shù)列遞推公式的合理運用,合理地運用數(shù)學(xué)歸納法進(jìn)行證明.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是由正數(shù)組成的等比數(shù)列,a3=8,前3項的和S3=14
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)已知數(shù)列{bn}滿足
b1
a1
+
b2
a2
+…+
bn
an
=
n
2n
(n∈N*),證明:{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{bn}滿足b1=1,b2=5,bn+1=5bn-6bn-1(n≥2),若數(shù)列{an}滿足a1=1,an=bn(
1
b1
+
1
b2
+…+
1
bn-1
)(n≥2,n∈N*)

(1)求證:數(shù)列{bn+1-2bn}為等比數(shù)列,并求數(shù)列{bn}的通項公式;
(2)求證:(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{}an中,如果存在常數(shù)T(T∈N*),使得an+T=an對于任意正整數(shù)n均成立,那么就稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an]的周期.已知數(shù)列{bn}滿足bn+2=|bn+1-bn|,若b1=1,b2=a,(a≤1,a≠0)當(dāng)數(shù)列{bn}的周期為3時,則數(shù)列{bn}的前2010項的和S2010等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
1+x
.設(shè)數(shù)列{an}滿足a1=1,an+1=f(an)(n∈N+).
(1)求數(shù)列{an}的通項公式;
(2)已知數(shù)列{bn}滿足b1=
1
2
,bn+1=(1+bn)2f(bn)(n∈N+),求證:對一切正整數(shù)n≥1都有
1
a1+b1
+
1
2a2+b2
+…+
1
nan+bn
<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
1-x
(0<x<1)
的反函數(shù)為f-1(x).設(shè)數(shù)列{an}滿足a1=1,an+1=f-1(an)(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)已知數(shù)列{bn}滿足b1=
1
2
,bn+1=(1+bn)2f-1(bn)
,求證:對一切正整數(shù)n≥1都有
1
a1+b1
+
1
2a2+b2
+
+
1
nan+bn
<2

查看答案和解析>>

同步練習(xí)冊答案